• Title/Summary/Keyword: Membrane filtration system

Search Result 197, Processing Time 0.023 seconds

Permeation Behavior of Semiconductor Rinsing Wastewater Containing Si Particles in Ultrafiltration System -II. Permeation Characteristics of Tubular Membrane (Si 입자를 함유한 반도체 세정폐수의 한외여과 특성 [II] -Polyolefin 관형막에 의한 투과분리-)

  • 남석태;여호택;전재홍;이석기;최호상
    • Membrane Journal
    • /
    • v.9 no.1
    • /
    • pp.36-42
    • /
    • 1999
  • Permeation behavior of the semiconductor rinsing wastewater contammg Si particles was examined by ultrafiltration using the polyolefin tubular membrane. Flux decline with time was due to the growth of Si cake deposited on the membrane surface and the pore plugging by Si particles. Cake filtration from the cross flow application is compared to the combination of pore blocking and cake filtration from the dead-end application. The cake resistance is 3.16 x $10^{12}$ -4.34 X $\times$$10^{12}$ $m^{-1}$ for the cross flow and 6.6 x $\times$$10^{12}$ -12.19 X $\times$$10^{12}$ $\times$$m^{-1}$for the dead-end flow, respectively. At the initial stage of operation, permeation flux of cross flow type was 1.7 time higher than that of the dead end flow type. Permeation flux of cross flow was about 42 e 1m2 hr and the rejection rate of Si particles was about 96 %. The average particle size of Si particle in the permeate was 20 nm.

  • PDF

Ammonia Removal Characteristics in Membrane Contactor System Using Tubular PTFE Membrane (관형 PTFE 분리막을 이용한 막 접촉기(Membrane Contactor) 시스템에서 암모니아의 제거 특성)

  • Ahn, Yong-Tae;Hwang, Yu-Hoon;Shin, Hang-Sik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.5
    • /
    • pp.353-358
    • /
    • 2011
  • In this study, ammonia removal characteristics in membrane contactor system under various operating conditions were evaluated. The mass transfer coefficient was used to quantitatively compare the effect of various operation conditions on ammonia removal efficiency. Effective removal of ammonia was possible with the tubular PTFE membrane contactor system at all tested conditions. Among the various operation parameters, contact time and solution pH showed significant effect on ammonia removal mechanism. Overall ammonia removal rate was not significantly affected by influent suspended solution concentration unlike other pressure driven membrane filtration processes. Also the osmotic distillation phenomena which deteriorate the mass transfer efficiency can be minimized by preheating of strip solution. Membrane contactor system can be a possible alternative to treat high strength nitrogen wastewater by optimizing operation conditions such as stripping solution flow rate, influent wastewater temperature, and influent pH.

The Hardness Water Production By RO/NF/ED Linking Process From Deep Seawater (RO/NF/ED 연계 공정에 의한 고경도 담수 제조)

  • Moon, Deok-Soo;Kim, Kwang Soo;Gi, Ho;Choi, Mi Yeon;Jung, Hyun Ji;Kim, Hyun Ju
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.16 no.4
    • /
    • pp.227-238
    • /
    • 2013
  • The purpose of this study is to develop a process technology to produce high hardness drinking water which meet drinking water standard, remaining useful minerals like magnesium and calcium in the seawater desalination process while removing the sulfate ions and chloride ions. Seawater have been separated the concentrated seawater and desalted seawater by passing on Reverse Osmosis membrane (RO). Using Nano-filtration membrane (NF), We were prepared primary mineral concentrated water that sodium chloride were not removed. By the operation of electro-dialysis (ED) having ion exchange membrane, we were prepared concentrated mineral water (Mineral enriched desalted water) which the sodium chloride is removed. We have produced the high hardness water to meet the drinking water quality standards by diluting the mineral enriched desalted water with deionized water by RO. Reverse osmosis membranes (RO) can separate dissolved material and freshwater from seawater (deep seawater). The desalination water throughout the second reverse osmosis membrane was completely removed dissolved substances, which dissolved components was removed more than 99.9%, its the hardness concentration was 1 mg/L or less and its chloride concentration was 2.3 mg/L. Since the nano-filtration membrane pore size is $10^{-9}$ m, 50% of magnesium ions and calcium ions can not pass through the nano-filtration membrane, while more than 95% of sodium ions and chloride ions can pass through NF membrane. Nano-filtration membrane could be separated salt components like sodium ion and chloride ions and hardness ingredients like magnesium ions and calcium ions, but their separation was not perfect. Electric dialysis membrane system can be separated single charged ions (like sodium and chloride ions) and double charged ions (like magnesium and calcium ions) depending on its electrical conductivity. Above electrical conductivity 20mS/cm, hardness components (like magnesium and calcium ions) did not removed, on the other hand salt ingredients like sodium and chloride ions was removed continuously. Thus, we were able to concentrate hardness components (like magnesium and calcium ions) using nano-filtration membrane, also could be separated salts ingredients from the hardness concentration water using electrical dialysis membrane system. Finally, we were able to produce a highly concentrated mineral water removed chloride ions, which hardness concentration was 12,600 mg/L and chloride concentration was 2,446 mg/L. By diluting 10 times these high mineral water with secondary RO (Reverse Osmosis) desalination water, we could produce high mineral water suitable for drinking water standards, which chloride concentration was 244 mg/L at the same time hardness concentration 1,260 mg/L. Using the linked process with reverse osmosis (RO)/nano filteration (NF)/electric dialysis (ED), it could be concentrated hardness components like magnesium ions and calcium ions while at the same time removing salt ingredients like chloride ions and sodium ion without heating seawater. Thus, using only membrane as RO, NF and ED without heating seawater, it was possible to produce drinking water containing high hardness suitable for drinking water standard while reducing the energy required to evaporation.

Characteristics of residuals from the 2nd-stage microfiltration in a dual membrane process (침지식 2단 막여과 고도 정수처리 시스템의 최종배출수 특징)

  • Lee, Seung Ryul;Kweon, Ji Hyang;Hur, Hyung Woo;Yeon, Kyeong Ho;Park, Ki Young
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.1
    • /
    • pp.31-37
    • /
    • 2009
  • Low-pressure membrane processes have been extensively expanded their applications to drinking water production in a few decades. As a capacity of a membrane plant becomes greater in recent years, proper methods to increase water production as well as to treat residuals have drawn great attention. A possible treatment option for the better water production is to apply a dual membrane system. The second stage microfiltration was installed and operated for approximately six months. The residuals from the two stage microfiltration were investigated to learn their characteristics in settling and dewatering processes. The settlability of the membrane residuals were greatest at the SS concentration of approximately 15000mg/L. The proper dose of the polyelectrolytes for filterability were obtained in the range of 0.5~1%. In the dosage range, the water contents of the membrane residuals were greater but the SRF were lower than the residual from the conventional process.

Membrane Concentrate Thickening by Hollow-fiber Microfilter in Drinkin Water Treatment Processes

  • 이병호
    • Membrane Journal
    • /
    • v.1 no.1
    • /
    • pp.100-100
    • /
    • 1991
  • A novel system to thicken the concentrated colloidal solution from membrane water treat-ment processes was developed. A hollow-fiber microfilter(hydrophilic polyethylene nominal pore size 0.1 μm total surface area 0.42 m2) was installed in an acrylic housing that has an aeration port 5 cm below the membrane and a clarifier in the bottom. The concentrate was uniformly supplied from the top of the housing. Bacuum filtration caused downward flow of concentrate and as a result thickening interface. The addition of poly-aluminum chloride (PAC) resulted in rapid increase of trans-membrane pressure (TMP) and in no improvement of the filtered water turbidity and thickening process. Two types of con-centrate and concentrate turbidity had little effect on the increase of TMP and concentrate thickening. It was observed that for the same height of membrane housing membrane surface area to housing volume (A/V) ratio had significant effect on the increase of TMP. When the housing volume was increased ten times the increasing rate of TMP was three times faster as compared to the original housing. A hydraulic model successfully simulated the formation and sedimentation of thickening interface.

Advanced Treatment of Wastewater from Food Waste Disposer in Modified Ludzack-Ettinger Type Membrane Bioreactor

  • Lee, Jae-Woo;Jutidamrongphan, Warangkana;Park, Ki-Young;Moon, Se-Heum;Park, Chul
    • Environmental Engineering Research
    • /
    • v.17 no.2
    • /
    • pp.59-63
    • /
    • 2012
  • This paper proposes a modified Ludzack-Ettinger (MLE) type membrane bioreactor (MBR) as a method of treatment for wastewater from food waste disposer. Micro-membrane filtration allows for an extremely low concentration of suspended solids in the effluent. The effluent of the reactor in question is characterized by a relatively high level of non-biodegradable organics, containing a substantial amount of soluble microbial products and biomass. Results obtained in this paper by measurement of membrane fouling are consistent with biomass concentration in the reactor, as opposed to chemical oxygen demand (COD). The MLE process is shown to be effective for the treatment of wastewater with a high COD/N ratio of 20, resulting in are markedly high total nitrogen removal efficiency. Denitrification could be improved at a higher internal recycle ratio. Despite the low concentration of influent phosphorus, the phosphorus concentration of the outflow is seen to be relatively high. This is because outflow phosphorous concentration is related to COD consumption, and the process operates at along solids retention time.

Cleaner Production Option in a Food(Kimchi) Industry

  • Choo, Kwang-Ho;Lee, Chung-Hak
    • Korean Membrane Journal
    • /
    • v.2 no.1
    • /
    • pp.1-8
    • /
    • 2000
  • In Kimchi (a salt-pickled and fermented food) manufacturing industry, the process of brining and rinsing the raw vegetable produces a vast amount of wastewater of high salinity. Instead of expensive and low-efficient conventional treatment system, brining wastewater reuse system was developed using hybrid chemical precipitation/microfiltration. In the microfiltration of chemically treated brining wastewater, comparison of flux, backwashing frequency and energy consumption was made between dead-end and crossflow filtration mode. The optimum location of neutralization step in this system was also discussed in connection with the microfiltration performance. The quality test of Kimchi prepared by the reuse system confirmed the new approach was successful in terms of water/raw material(salt) saving and wastewater reduction.

  • PDF

Development Trend of Membrane Filter Using Ceramic Fibers (세라믹 섬유를 이용한 멤브레인 필터의 연구개발 동향)

  • Kim, Deuk Ju;Lee, Jeong Woo;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.26 no.2
    • /
    • pp.87-96
    • /
    • 2016
  • Ceramic materials have attracted increasing attention in the last 10 years because of their high thermal stability and high permeation property compared with polymeric nanofiber membranes. Recently, novel nanofiber ceramic membranes with high porosity and flux have been fabricated from metal oxide nanofibers. To improve the performance of ceramic membranes and reduce their costs, a new ceramic membrane with a selective separation layer made of nanofibers was fabricated by electrospinning process and modification process for filtration system. This review summarizes the research trends for the development of ceramic nanofiber membrane over the past few years.

Non Thermal Process and Quality Changes of Foxtail Millet Yakju by Micro Filtration (미세여과에 의한 비 가열살균 좁쌀약주의 제조 및 저장 중 품질변화)

  • Kang, Young-Joo;Oh, Young-Ju;Koh, Jeong-Sam
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.2
    • /
    • pp.277-284
    • /
    • 2005
  • Micro-filtration (MF) or ultra-filtration (UF) system with hollow-fiber cartridge was introduced in order to improve the Quality level of commercial foxtail millet Yakju, which has an off-flavour and/or undesired colour after the thermal treatment. The filtration effects of cartridges such as MF (0.65, 0.45, 0.2, 0.1 $\mu$m) and UF (500 K dalton) were investigated. The physicochemical and sensory characteristics of the Yakju were then evaluated during the 6 months storage at room temperature. The exclusion ability of microorganism in samples was confirmed in all cartridges, but 0.45 pm MF-cartridge was suitable in the Yakju manufacture due to its superior filtration rate and efficiency. Changes in reducing sugar and colour difference of foxtail millet Yakju untreated or treated by heat ($65^{\circ}C$${\times}$10 min) were observed during the storage; after 6 months the L-value of thermal-treatment sample was decreased and its b-value, however, significantly increased so that its color became dark, in comparison to non-thermal treatment sample. This decrease of reducing sugar is assumed that color change is associated with non-enzymatic browning reaction. Sensory Quality of foxtail millet Yakju produced by non-thermal treatment was better than that of thermal treatment.

Sensitivity Analysis of Initial Pressure and Upper Control Limit on the Pressure Decay Test for Membrane Integrity Evaluation (압력손실시험을 이용한 막 완결성 평가에서 초기압력 및 UCL 도출인자 민감도 분석)

  • Lee, Joohee;Hong, Seungkwan;Hur, Hyunchul;Lee, Kwangjae;Choi, Youngjune
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.6
    • /
    • pp.793-800
    • /
    • 2008
  • Recently domestic drinking water industry has recognized membrane-based technology as a promising alternative for water treatment. To ensure successful application of membrane processes, the integrity of membrane systems should be maintained. According to US EPA guidance, the pressure decay test based on the bubble point theory is recommended to detect any membrane defection of which size is close to the smallest diameter of Cryptosporidium oocysts, $3{\mu}m$. Proper implementation of the pressure decay test is greatly affected by initial test pressure, and the interpretation of the test results is associated with upper control limit. This study is conducted to investigate various factors affecting determination of initial test prtessure and upper control limit, including membrane-based parameters such as pore shape correction factor, surface tension and contact angle, and system-based parameters, such as volumetric concentration factor and total volume of system. In this paper, three different hollow fibers were used to perform the pressure decay test. With identical initial test pressure applied, their pressure decay tendency were different from each other. This finding can be explained by the micro-structure disparity of those membranes which is verified by FESEM images of those membranes. More specifically, FESEM images revealed that three hollow fibers have asymmetry, deep finger, shallow finger pore shape, respectively. In addition, sensitivity analysis was conducted on five parameters mentioned above to elucidate their relation to determination of initial test pressure and upper control limit. In case of initial pressure calculation, the pore shape correction factor has the highest value of sensitivity. For upper control limit determination, system factors have greater impact compared to membrane-based parameters.