• 제목/요약/키워드: Membrane degradation

Search Result 392, Processing Time 0.026 seconds

Degradation Characteristics of Cross-linked Hyaluronic Acid Membrane (가교된 히아루론산 막의 분해 특성)

  • Cheong, Seong-Ihl;Cho, Gu-Hyun
    • Membrane Journal
    • /
    • v.19 no.4
    • /
    • pp.310-316
    • /
    • 2009
  • The degradation characteristics of cross-linked lactide/hyaluronic acid (LA/HA) membranes were investigated for purpose of applying to tissue engineering. The lactide/hyaluronic acid cross-linked with 1,3-butadiene diepoxide (BD) and 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC) was degradated in deionized water in water bath at $37^{\circ}C$. As the LA/HA mole ratio or crosslinking agent concentration decreased, the degradation rate of the crosslinked membranes increased. In order to investigate the structure change of the membrane in the degradation process, the control sample and 3, 6, 9 days-degradated samples were analysed by the nuclear magnetic resonance spectroscopy. In case of the membranes crosslinked with EDC, the HA-EDC bonding structure was degradated slowly whereas the HA-LA bonding structure was degradated quickly and dissappeared completely after 6 days. In case of the membranes crosslinked with BD, all the crosslinked bonding structure degradated slowly. The HA-BD bonding structure maintained its original state about 89, 83% in case of 3, 6 days-degardated samples respectively whereas the HA-LA bonding structure maintained its original state about 83, 65%. The scanning electron microscopy of the degradated membranes showed that the pore density in the surface, and the structure in the surface and cross section, of the before and after-degradation membranes did not change greatly, so the membranes was shown to be applied to materials for tissue engineering.

Effects of Storage Condition on Degradation of Automotive Polymer Electrolyte Membrane Fuel Cells (보관상태가 자동차용 고분자전해질 연료전지의 성능 감소에 미치는 영향)

  • Cho, Eun-Ae
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.4
    • /
    • pp.277-282
    • /
    • 2010
  • Durability of automotive polymer electrolyte membrane fuel cell (PEMFC) strongly depends the startup/shutdown procedure. Formation of hydrogen/air boundary in the anode gas channel, so-called reverse current condition, particularly induces fast degradation of the cathode. Under the reverse current condition, high voltage is present at the cathode facing air in the anode gas channel and is a function of residual oxygen concentration in the gas channels, that increases with storage time and reaches 21% (air) eventually. In this study, effects of residual oxygen concentration in a PEMFC on degradation of the PEMFC.

Acceleration Test of Membrane-Electrode Assembly in PEMFC (고분자연료전지의 전해질-전극 접합체의 열화 가속시험)

  • Lee, Jung-Hun;Yoon, Young-Gi;Jung, Eun-Ha;Lee, Won-Yong;Kim, Chang-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.93-96
    • /
    • 2007
  • Recently, much attentions have been paid on the commercialization of PEMFC, especially for the applications of residential and portable. In order to achieve the early commercialization of PEMFC, thee are two hurdles to overcome. One is cost down and the other is improvement of durability of the system components. Numerous companies have tried to reduce the production cost and the main research topics have been changed from performance to durability improvement. In this work, acceleration test were performed to find and evaluate the main reason of degradation of the MEA(membrane-electrode assembly) which is one of the core component of the PEMFC system. Based upon the test results, a way to make durable MEA was suggested. Acceleration tests were made by applying high voltage of 1.2V to the several kinds of single cells to increase the growth of catalyst particles. Cell performance, ac-impedance and electrochemically active area measurements were made atfter every 8 hours of acceleration test. Degradations of catalyst and membrane were examined by SEM, TEM and XRD. Obtained results were discussed in terms of structural stability and loss of catalyt and ionomers in the electrode layer. In addition, the way to make highly durable MEA was suggested.

  • PDF

Evaluation of bone formation and membrane degradation in guided bone regeneration using a 4-hexylresorcinol-incorporated silk fabric membrane

  • Lee, Sang-Woon;Um, In Chul;Kim, Seong-Gon;Cha, Min-Sang
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.37
    • /
    • pp.32.1-32.5
    • /
    • 2015
  • Background: The aims of present study were (1) to evaluate new bone formation among the 4-hexylresorcinol (4HR)-incorporated silk fabric membrane (SFM), conventional SFM, and uncovered control groups and (2) to compare the amount of residual membrane between the 4HR-incorporated SFM and conventional SFM in a rabbit parietal defect model. Methods: Nine New Zealand white rabbits were used for this animal study. After the formation of a bilateral parietal bone defect (diameter 8.0 mm), either 4HR-incorporated SFM or conventional SFM was grafted into the defect. The defect in the control was left uncovered. New bone formation and the amount of residual membrane were evaluated by histomorphometry at 8 weeks after the operation. Results: The total amount of new bone was $37.84{\pm}8.30%$ in the control, $56.64{\pm}15.74%$ in the 4HR-incorporated SFM group, and $53.35{\pm}10.52%$ in the conventional SFM group 8 weeks after the operation. The differences were significant between the control and 4HR-incorporated SFM group (P = 0.016) and between the control and conventional SFM group (P = 0.040). The residual membrane was $75.08{\pm}10.52%$ in the 4HR-incorporated SFM group and $92.23{\pm}5.46%$ in the conventional SFM group 8 weeks after the operation. The difference was significant (P = 0.039). Conclusions: The 4HR-incorporated SFM and conventional SFM groups showed more bone regeneration than the control group. The incorporated 4HR accelerated the partial degradation of the silk fabric membrane in a rabbit parietal defect model 8 weeks after the operation.

Functional Properties of Egg Shell Membrane Hydrolysate as a Food Material (난각막 분해물의 식품 소재로서 기능적 특성)

  • 전태욱;박기문
    • Food Science of Animal Resources
    • /
    • v.22 no.3
    • /
    • pp.267-273
    • /
    • 2002
  • The functional properties of egg shell membrane hydrolysate by Bacillus licheniformis(EESMH) and NaOH-ethanol(AESMH) as a food material were investigated.. The yield of egg shell membrane hydrolysate was about 15% by Bacillus licheniformis, whereas that was 70% by NaOH-ethanol. Histidine content was higher in EESMH (18.69%) than in AESMH (2.56%). Both EESMH and AESMH showed high protein solubility (>95%). Emulsi-fying activity and stability of EESMH were higher than those of AESMH. foaming capacity and stability of AESMH were 2 times higher than those of EESMH in the pH ranges from 2 to 12. The AESMH had antioxidative activity whereas EESMH had not. Therefore, both AESMH and EESMH can be used for industrial food materials from the results of functional properties.

Combined Effects of Metal Coagulants and Monochloramine on Polyamide RO Membrane Performance (금속성 응집제와 모노클로라민의 상호작용이 Polyamide계 RO막 성능에 미치는 영향)

  • Kim, Kyunghwa;Hong, Seungkwan;Park, Chanhyuk;Yoon, Seongro;Hong, Seongpyuo;Lee, Jonghwa
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.4
    • /
    • pp.637-643
    • /
    • 2006
  • The bench-scale chlorine exposure study was performed to investigate the effect of pretreatment by free chlorine and monochloramine ($NH_2Cl$) on the performance of RO membranes made of polyamide (PA). Feed monochloramination at 2mg/L did not cause significant productivity loss compared to free chlorine. However, metal coagulants reacted with monochloramine, the PA membrane suffered from a gradual loss of membrane integrity by chlorine oxidation, which was characterized as a decrease in salt rejection. Especially, RO membranes exposed to alum coagulants with monochloramine revealed the salt rejection lower than those exposed to iron coagulants. XPS membrane surface analysis demonstrated that the chlorine uptake on the membrane surface increased and carbon peaks were shifted significantly when exposed to alum coagulants with monochloramine.

Photocatalytic Degradation of Organic Compounds Using $TiO_2$ Membranes

  • 현상훈;심세진
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1992.10a
    • /
    • pp.9-9
    • /
    • 1992
  • 막 반응기(membrane reactor)는 365 nm 의 파장을 갖는 UV를 담체튜브 및 코팅막에 조사시켜 막 표면에서 유기물의 산화반응이 일어날수 있도록 고안하였으며 일차적으로 formic acid의 산화효율을 측정하였다. 코팅된 담체는 코팅하지 않은 담체에 비해 flux가 상당히 저하하는 반면에 formic acid의 산화효율은 이에 비례하여 증가하였다. 또한 본 실험의 결과로부터 수처리공정에서 문제시되는 난분해성 유기물질의 산화분해처리에 대한 광촉매 막의 응용성을 제시하고자 한다.

  • PDF

$TiO_2$/UV and Ultrafiltration Membrane Process for the Degradation of Bisphenol A Dissolved in Water

  • Noh, Kev-Hwan;Kwon, Tea-Ouk;Lee, Jae-Wook;Moon, Il-Shik
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05a
    • /
    • pp.203-206
    • /
    • 2004
  • Many types for environmental pollutant of endocrine disruptors have been reported on abnormal sexual development and abnormal feminizing responses of animals in a number of literatures [1]. Conventional biological methods for the removal of pollutants in wastewater require long times, and chemical oxiation methods in general cannot completely eliminate.(omitted)

  • PDF

Characterization of Hyaluronic Acid Membrane Cross-linked with Lactide (락타이드로 가교시킨 히아루론산 막의 특성)

  • Kwon, Ji-Young;Cheong, Seong-Ihl
    • Polymer(Korea)
    • /
    • v.29 no.6
    • /
    • pp.599-604
    • /
    • 2005
  • The hyaluronic acid (HA) with excellent biocompatibility has been combined with lactide, the ester dimer of polylactide, with good biodegradability to produce biocompatible materials which can control the period of degradation in a human body. By freeze frying method, HA and lactide were crosslinked with crosslinking agent, 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC). Degree of lactide and EDC reaction was determined by the analysis of nuclear magnetic resonance spectroscopy. Both lactyl group and EDC conversion increased as the mole ratio of lactide to HA increased from 5 to 13. The membrane swelled less and became more brittle with the more addition of lactyl group resulting from the higher mole ratio of lactide to HA. Swelling ratio decreased and tensile modulus increased due to the more addition of lactyl group as the EDC concentration increased or reaction temperature decreased. Drug release experiment from various membranes with different degree of crosslinking showed that permeability decreased with increasing degree of crosslinking. The degradation became slower with the more addition of lactyl group. Mechanical property and degradation rate of the synthesized membrane were shown to be controlled through adjusting operation parameters such as mole ratio, temperature, and crosslinking agent concentration.