• 제목/요약/키워드: Membrane currents

검색결과 130건 처리시간 0.023초

Induction of Oscillatory Firing Activity by TTX in Rat Cerebellar Purkinje Cells

  • Seo, Wha-Sook
    • The Korean Journal of Physiology
    • /
    • 제29권1호
    • /
    • pp.103-111
    • /
    • 1995
  • Intracellular recordings were obtained from Purkinje cells in rat cerebellar slices maintained in vitro. Adding tetrodotoxin to the superfusion solution produced a typical pattern of repetitive burst firing consisting of a cluster of action potentials followed by a long hyperpolarization. TTX-induced oscillatory activity was not due to modulation of membrane potential although underlying mechanisms for maintenance of oscillatory activity were influenced by membrane voltage. The mechanism of TTX-induced oscillation was not related to the presence or amplitude of $I_h$ and could still induce the oscillatory activity after blockade of $I_h$ by cesium. The result from an experiment in which QX-314 was injected intracellularly strongly suggested that TTX-induced oscillatory firing activity was due to blockade of post-synaptic $Na^{+}$ currents intrinsic to PCs.

  • PDF

분리판 분할을 통만 연료전지의 전류분포 측정법에 대한 수치적 검증 (Computational Justification of Current Distribution Measurement Technique Via Segmenting Bipolar Plate in Fuel Cells)

  • 최용준;이기용;강경문;김환기;주현철
    • 한국수소및신에너지학회논문집
    • /
    • 제21권1호
    • /
    • pp.1-11
    • /
    • 2010
  • Current distribution measurement technique based on a segmented bipolar plate (BP) has been widely adopted to visualize the distribution of current density in a polymer electrolyte membrane. However, a concern is raised how closely the current density of a segmented BP can approach that of a corresponding non-segmented membrane. Therefore, in this paper, the accuracy of the measurement technique is numerically evaluated by applying a three-dimensional, two-phase fuel cell model to a $100\;cm^2$ area fuel cell geometry in which segmented BPs and non-segmented membrane are combined together. The simulation results reveal that the errors between the current densities of the segmented BPs and non-segmented membrane indeed exist, predicting the maximum relative error of 33% near the U-turn regions of the flow-field. The numerical study further illustrates that the erroneous result originates from the BPs segmented non-symmetrically based on the flow channels that allows some currents bypassing flow channels to flow into its neighboring segment. Finally, this paper suggests the optimal way for bipolar plate segmentation that can minimize the deviation of current measured in a segmented BP from that of a corresponding membrane region.

다전극 산소 센서를 이용한 고분자 막의 산소 투과도 측정 장치 연구 (A Study on the Apparatus for Measuring Oxygen-Permeability of Membranes with a Multi-Electrode Oxygen Sensor)

  • 정일손;정재칠;김태진
    • 센서학회지
    • /
    • 제21권3호
    • /
    • pp.229-234
    • /
    • 2012
  • The existing permeability measurements based on pressure differential between the polymer membrane that is permeable to measure the amount of oxygen used, but these methods must be kept in a vacuum, and the measurement of the membrane with low permeability in the membrane is too time consuming. In recent years by using electrochemical method polymer membrane currents caused by the amount of oxygen is a measure of how much is used. In this study, apparatus consisting of one anode and six cathodes for multi-oxygen permeability tester used the same number of membranes produced by electrochemical oxygen permeation characteristics. In this study, one silver/silver chloride anode electrochemical method with a hexagonal sensor to put various kinds of polymer membranes with the six oxygen permeability for simultaneous measurement in real-time systems. Six cathodes (Pt), and one of the coil-shaped anode (Ag/AgCl) to form a hexagonal one of the polarographic oxygen sensor in a single measurement system by six sensors. Each sensor for making hexagonal specificity of the sensor to compensate for the conditions obtained in a pure nitrogen gas and pure oxygen gas conditions. With this study, self-developed hexagonal sensor capable of measuring sensors and oxygen permeability tester, for a multi-six different oxygen permeability characteristics of the membrane measured at the same time.

산소센서용 CTA/PCL 효소고정화막과 반투막을 단일화한 PVA적층막의 제조 및 특성 (Preparation and Characteristics of a Single-layer PVA Laminated CTA/PCL Membrane for Oxygen Biosensor Electrode)

  • 서종원;김태진;정용섭;윤정원
    • 센서학회지
    • /
    • 제8권3호
    • /
    • pp.247-252
    • /
    • 1999
  • 바이오센서로 이용되는 산소센서에는 효소고정화막과 함께 반투성막이 필요한데, 이러한 두 층의 막은 취급이 쉽지 않아서 상업화하기가 불리하므로, 이 두 막을 하나의 적층막으로 제조하였다. cellulose triacetate/polycarprolactone(CTA/PCL)막에 1,1'-carbonyl diimidazole(CDI) 방법으로 glucose oxidase, ascorbate oxidase, pyrubate oxidase와 alcohole oxidase 등의 효소를 고정화시킨 다음, 그 위에 polyvinylalcohol을 알데하이드와 산과 혼합하여 적층방법으로 단일막을 제조하였다. 고정화된 이 적층막을 산소전극에 부착하여 glucose, ascorbate, pyrubate, ethanol의 농도에 따른 전류변화를 측정한 결과, 각각 5-10mmol 이내의 기질농도에서 $0.38{\sim}0.83{\mu}A$까지 r=0.995의 선형성을 나타내었다. 한편, 고정화된 적층막의 저장중 안정성은 glucose oxidase는 8주 후에도 56% 이상의 활성을 나타내고 있었으나 나머지 효소들은 효소의 안정성이 낮았다.

  • PDF

[$Ca^{2+}-activated\;K^+$ Currents of Pancreatic Duct Cells in Guinea-pig

  • Lee, Han-Wook;Li, Jing Chao;Koo, Na-Youn;Piao, Zheng Gen;Hwang, Sung-Min;Han, Jae-Woong;Choi, Han-Saem;Lee, Jong-Heun;Kim, Joong-Soo;Park, Kyung-Pyo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제8권6호
    • /
    • pp.335-338
    • /
    • 2004
  • There are numerous studies on transepithelial transports in duct cells including $Cl^-$ and/or $HCO_3^-$. However, studies on transepithelial $K^+$ transport of normal duct cells in exocrine glands are scarce. In the present study, we examined the characteristics of $K^+$ currents in single duct cells isolated from guinea pig pancreas, using a whole-cell patch clamp technique. Both $Cl^-$ and $K^+$ conductance were found with KCI rich pipette solutions. When the bath solution was changed to low $Cl^-$, reversal potentials shifted to the negative side, $-75{\pm}4\;mV$, suggesting that this current is dominantly selective to $K^+$. We then characterized this outward rectifying $K^+$ current and examined its $Ca^{2+}$ dependency. The $K^+$ currents were activated by intracellular $Ca^{2+}$. 100 nM or 500 nM $Ca^{2+}$ in pipette significantly (P<0.05) increased outward currents (currents were normalized, $76.8{\pm}7.9\;pA$, n=4 or $107.9{\pm}35.5\;pA$, n=6) at +100 mV membrane potential, compared to those with 0 nM $Ca^{2+}$ in pipette $(27.8{\pm}3.7\;pA,\;n=6)$. We next examined whether this $K^+$ current, recorded with 100 nM $Ca^{2+}$ in pipette, was inhibited by various inhibitors, including $Ba^{2+}$, TEA and iberiotoxin. The currents were inhibited by $40.4{\pm}%$ (n=3), $87.0{\pm}%$ (n=5) and $82.5{\pm}%$ (n=9) by 1 mM $Ba^{2+}$, 5 mM TEA and 100 nM iberiotoxin, respectively. Particularly, an almost complete inhibition of the current by 100 nM iberiotoxin further confirmed that this current was activated by intracellular $Ca^{2+}$. The $K^+$ current may play a role in secretory process, slnce recycling of $K^+$ is critical for the initiation and sustaining of $CI^-$ or $HCO_3^-$ secretion in these cells.

Ryanodine Receptor-mediated Calcium Release Regulates Neuronal Excitability in Rat Spinal Substantia Gelatinosa Neurons

  • Park, Areum;Chun, Sang Woo
    • International Journal of Oral Biology
    • /
    • 제40권4호
    • /
    • pp.211-216
    • /
    • 2015
  • Nitric Oxide (NO) is an important signaling molecule in the nociceptive process. Our previous study suggested that high concentrations of sodium nitroprusside (SNP), a NO donor, induce a membrane hyperpolarization and outward current through large conductances calcium-activated potassium ($BK_{ca}$) channels in substantia gelatinosa (SG) neurons. In this study, patch clamp recording in spinal slices was used to investigate the sources of $Ca^{2+}$ that induces $Ca^{2+}$-activated potassium currents. Application of SNP induced a membrane hyperpolarization, which was significantly inhibited by hemoglobin and 2-(4-carboxyphenyl) -4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt (c-PTIO), NO scavengers. SNP-induced hyperpolarization was decreased in the presence of charybdotoxin, a selective $BK_{Ca}$ channel blocker. In addition, SNP-induced response was significantly blocked by pretreatment of thapsigargin which can remove $Ca^{2+}$ in endoplasmic reticulum, and decreased by pretreatment of dentrolene, a ryanodine receptors (RyR) blocker. These data suggested that NO induces a membrane hyperpolarization through $BK_{ca}$ channels, which are activated by intracellular $Ca^{2+}$ increase via activation of RyR of $Ca^{2+}$ stores.

Electrochemical Behavior for a Reduction of Uranium Oxide in a $LiCl-Li_{2}O$ Molten Salt with an Integrated Cathode assembly

  • Park, Sung-Bin;Park, Byung-Heung;Seo, Chung-Seok;Jung, Ki-Jung;Park, Seong-Won
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2005년도 Proceedings of The 6th korea-china joint workshop on nuclear waste management
    • /
    • pp.39-50
    • /
    • 2005
  • Electrolytic reduction of uranium oxide to uranium metal was studied in a $LiCl-Li_{2}O$ molten salt system. The reduction mechanism of the uranium oxide to a uranium metal has been studied by means of a cyclic voltammetry. Effects of the layer thickness of the uranium oxide and the thickness of the MgO on the overpotential of the cathode and the anode were investigated by means of a chronopotentiometry. From the cyclic voltamograms, the decomposition potentials of the metal oxides are the determining factors for the mechanism of the reduction of the uranium oxide in a $LiCl-3\;wt{\%} Li_{2}O$ molten salt and the two mechanisms of the electrolytic reduction were considered with regards to the applied cathode potential. In the chronopotentiograms, the exchange current and the transfer coefficient based on the Tafel behavior were obtained with regard to the layer thickness of the uranium oxide which is loaded into the porous MgO membrane and the thickness of the porous MgO membrane. The maximum allowable currents for the changes of the layer thickness of the uranium oxide and the thickness of the MgO membrane were also obtained from the limiting potential which is the decomposition potential of LiCl.

  • PDF

오미자의 유방암 세포사멸과 TRPM7 관련성에 관한 연구 (Effects of Schisandra Chinensis on Human Breast Cancer Cells)

  • 김정남;채한;권영규;김병주
    • 동의생리병리학회지
    • /
    • 제28권2호
    • /
    • pp.162-168
    • /
    • 2014
  • Fruits of Schisandra chinensis (SC) Baill are considered a traditional herbal medicine for the treatment and alleviation of various diseases. The purpose of this study was to investigate the anti-cancer effects of SC extract in human breast adenocarcinoma cells (MCF-7). We used human breast adenocarcinoma cell line, MCF-7 cells. We examined cell death by MTT assay and caspase 3 and 9 assay with SC extract. To examine the inhibitory effects of SC extract, cell cycle (sub G1) analysis and mitochondrial membrane depolarization was done the MCF-7 cells after one day with SC extract. In addition, to investigate the transient receptor potential melastatin 7 (TRPM7) currents, we used the whole cell patch clamp techniques. Furthermore, TRPM7 channels were overexpressed in human embryonic kidney (HEK) 293 cells to identify the role of TRPM7 channels in MCF-7 cell growth and survival. SC extract inhibited the growth of MCF-7 cells in a dose-dependent fashion. Also we showed that SC extract induced apoptosis in MCF-7 cells by MTT assay, caspase 3 and 9 assay, sub-G1 analysis and mitochondrial membrane depolarization. SC extract inhibited the TRPM7 currents in MCF-7 cells and in TRPM7 overexpressed HEK 293 cells. Furthermore, TRPM7 channel overexpression in HEK 293 cells exacerbated SC extract-induced cell death. Our findings provide insight into unraveling the effects of SC extract in human breast adenocarcinoma cells and developing therapeutic agents against breast cancer.

pH-mediated Regulation of Pacemaker Activity in Cultured Interstitial Cells of Cajal

  • Kim, Byung-Joo;Lee, Jae-Hwa;So, In-Suk;Kim, Ki-Whan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제10권1호
    • /
    • pp.7-11
    • /
    • 2006
  • Interstitial cells of Cajal (ICCs) are pacemakers in gastrointestinal tracts, regulating rhythmicity by activating nonselective cation channels (NSCCs). In the present study, we investigated the general characteristics and pH-mediated regulation of pacemaker activity in cultured interstitial cells of Cajal. Under voltage clamp mode and at the holding potential of -60 mV, the I-V relationships and difference current showed that there was no reversal potential and voltage-independent inward current. Also, when the holding potentials were changed from +20 mV to -80 mV with intervals of 20 mV, there was little difference in inward current. In pacemaker activity, the resting membrane potential (RMP) was depolarized (In pH 5.5, $23{\pm}1.5$ mV depolarized) and the amplitude was decreased by a decrease of the extracellular pH. However, in case of increase of extracellular pH, the RMP was slightly hyperpolarized and the amplitude was decreased a little. The melastatin type transient receptor potential (TRPM) channel 7 has been suggested to be required for intestinal pacemaking activity. TRPM7 produced large outward currents and small inward currents by voltage ramps, ranging from +100 to -100 mV from a holding potential of -60 mV. The inward current of TRPM7 was dramatically increased by a decrease in the extracellular pH. At pH 4.0, the average inward current amplitude measured at -100 mV was increased by about 7 fold, compared with the current amplitude at pH 7.4. Changes in the outward current (measured at +100 mV) were much smaller than those of the inward current. These results indicate that the resting membrane potential of pacemaking activity might be depolarized by external acidic pH through TRPM7 that is required for intestinal pacemaking activity.

Effects of Noradrenaline on the Membrane Potential of Prostatic Neuroendocrine Cells of Rat

  • Kim, Jun-Hee;Shin, Sun-Young;Uhm, Dae-Yong;Kim, Sung-Joon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제7권1호
    • /
    • pp.47-52
    • /
    • 2003
  • The prostate gland contains numerous neuroendocrine cells that are believed to influence the function of the prostate gland. Our recent study demonstrated the expression of both ${\alpha}1$- and ${\alpha}2$-ARs, signaling the release of stored $Ca^{2+}$ and the inhibition of N-type $Ca^{2+}$ channels, respectively, in rat prostate neuroendocrine cells (RPNECs). In this study, the effects of NA on the resting membrane potential (RMP) of RPNECs were investigated using a whole-cell patch clamp method. Fresh RPNECs were dissociated from the ventral lobe of rat prostate and identified from its characteristic shape; round or oval shape with dark cytoplasm. Under zero-current clamp conditions with KCl pipette solution, the resting membrane potential (RMP) of RPNECs was between -35 mV and -85 mV. In those RPNECs with relatively hyperpolarized RMP (<-60 mV), the application of noradrenaline (NA, $1{\mu}M$) depolarized the membrane to around -40 mV. In contrast, the RPNECs with relatively depolarized RMP (>-45 mV) showed a transient hyperpolarization and subsequent fluctuation at around -40 mV on application of NA. Under voltage clamp conditions (holding voltage, -40 mV) with CsCl pipette solution, NA evoked a slight inward current (<-20 pA). NA induced a sharp increase of cytosolic $Ca^{2+}$ concentration ($[Ca^{2+}]_c$), measured by the fura-2 fluorescence, and the voltage clamp study showed the presence of charybdotoxin-sensitive $Ca^{2+}$-activated $K^+$ currents. In summary, adrenergic stimulation induced either depolarization or hyperpolarization of RPNECs, depending on the initial level of RMP. The inward current evoked by NA and the $Ca^{2+}$-activated $K^+$ current might partly explain the depolarization and hyperpolarization, respectively.