• Title/Summary/Keyword: Membrane bioreactor (MBR)

Search Result 124, Processing Time 0.023 seconds

Characteristics of Food Waste Leachate Treatment in Thermophilic two Stage Anaerobic Digestion Combined UF Membrane (막결합형 고온 이상 혐기성 소화공정에서 음폐수 처리 특성)

  • Kim, Young-O;Jun, Duk-Woo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.20 no.3
    • /
    • pp.21-24
    • /
    • 2012
  • In this study, Anaerobic Membrane Bioreactor(AnMBR) treating food waste leachate was operated to investigate treatment efficiency of anaerobic process, operational parameters and production of biogas. AnMBR was operated under the condition of filtration type of inside-out mode. AnMBR was operated under the condition that range of permeate flux was from 15 to 20 LMH and range of transmembrane pressure was from 1 to $3 kgf/cm^2$. It was not good that AnMBR was performed under direct connection between anaerobic reactor and external UF module. so, this connection method changed to indirect connection using buffer tank was placed between anaerobic reactor and UF external module. TCOD and SCOD values were that influent were about 113 g/L, 62 g/L and effluent were 25 g/L, 12 g/L, respectively. also TCOD and SCOD removal efficiency were 77% and 81%, respectively. but after added UF process, COD and SCOD removal efficiency was increased to 93% and 86%, respectively.

Estimation of Dominant Bacterial Species in a Bench-Scale Shipboard Sewage Treatment Plant

  • Mansoor, Sana;Ji, Hyeon-Jo;Shin, Dae-Yeol;Jung, Byung-Gil;Choi, Young-Ik
    • Journal of Environmental Science International
    • /
    • v.28 no.10
    • /
    • pp.899-905
    • /
    • 2019
  • Recently, an innovative method for wastewater treatment and nutrient removal was developed by combining the sequence batch reactor and membrane bioreactor to overcome pollution caused by shipboard sewage. This system is a modified form of the activated sludge process and involves repeated cycles of mixing and aeration. In the present study, the bacterial diversity and dominant microbial community in this wastewater treatment system were studied using the MACROGEN next generation sequencing technique. A high diversity of bacteria was observed in anaerobic and aerobic bioreactors, with approximately 486 species. Microbial diversity and the presence of beneficial species are crucial for an effective biological shipboard wastewater treatment system. The Arcobacter genus was dominant in the anaerobic tank, which mainly contained Arcobacter lanthieri (8.24%), followed by Acinetobacter jahnsonii (5.81%). However, the dominant bacterial species in the aerobic bioreactor were Terrimonas lutea (7.24%) and Rubrivivax gelatinosus (4.95%).

Suction Pressures with respect to the Operational Modes using the Multi-bore Capillary Membranes in the Membrane Bioreactor (생물막 반응기내 다공성 중공사형막을 이용한 운전방식에 따른 흡입 압력)

  • Kim, Min Hyeong;Koo, Eeung Mo;Lee, Min Soo;Chung, Kun Yong
    • Membrane Journal
    • /
    • v.31 no.5
    • /
    • pp.343-350
    • /
    • 2021
  • In this study the suction pressure was measured with respect to operational time by submersing the multi-bore capillary membrane module in membrane bioreactor(MBR). The hexagonal shape capillary module which has the nominal pore size of 0.2 ㎛, outer diameter of 6.4 or 4.2 mm was immersed in MLSS 8,000 mg/L active sludge aqueous solution, and confirmed changes with respect to permeation flux and air flow rate. It was operated by the filtration/relaxation(FR), FR with backwashing(FR/BW), and sinusoidal flux continuous operation(SFCO) modes. The suction pressure for the SFCO and FR modes was lower at 30 and 50 L/m2·hr, respectively. In addition, the suction pressure of the module with a small outer diameter was relatively low. The suction pressure of a large outer diameter was greatly increased, but it could be reduced by more than 40% by backwashing.

Reduction of energy demand for UF cross-flow membranes in MBR by sponge ball cleaning

  • Issa, Mohammad;Geissen, Sven-Uwe;Vogelpohl, Alfons
    • Membrane and Water Treatment
    • /
    • v.12 no.2
    • /
    • pp.65-73
    • /
    • 2021
  • Sponge ball cleaning can generate an abrasion effect, which leads to an attractive increasing in both permeate flux and membrane rejection. The aim of this study was to investigate the influence of the daily sponge ball cleaning (SBC) on the performance of different UF cross-flow membrane modules integrated with a bioreactor. Two 1"-membrane modules and one 1/2"-membrane module were tested. The parameters measured and controlled are temperature, pH, viscosity, particle size, dissolved organic carbon (DOC), total suspended solids (TSS), and permeate flux. The permeate flux could be improved by 60%, for some modules, after 11 days of daily sponge ball cleaning at a transmembrane pressure of 350 kPa and a flow velocity of 4 m/s. Rejection values of all tested modules were improved by 10%. The highest permeate flux of 195 L/㎡.h was achieved using a 1"-membrane module with the aid of its negatively charged membrane material and the daily sponge ball cleaning. In addition, the enhancement in the permeate flux caused by daily sponge ball cleaning improved the energy specific demand for all tested modules. The negatively charged membrane showed the lowest energy specific demand of 1.31 kWh/㎥ in combination with the highest flux, which is a very competitive result.

Numerical Simulation of Three Dimensional Fluid Flow Phenomena in Cylindrical Submerged Flat Membrane Bioreactor for Aeration Rate (원통 침지형 평막 생물반응기 내 산기량에 따른 3차원 유동현상에 관한 수치모사)

  • Kim, Dae Chun;Chung, Kun Yong
    • Applied Chemistry for Engineering
    • /
    • v.25 no.4
    • /
    • pp.401-408
    • /
    • 2014
  • In membrane bio-reactor (MBR), the aeration control is one of the important independent variables to decrease fouling and to save energy with shear stress change on the membrane surface. The paper was carried out for numerical simulation of 3-dimensional fluid flow phenomena of the cylindrical bioreactor with submerged flat membranes equipped in the center and supplied the air from the bottom by using the COMSOL program. The viscosity and temperature of solution were assumed to be constant, and the specific air demand based on permeate volume ($SAD_p$) defined as scouring air per permeate rates was used as a variable. The calculated CFD velocities were compared with those of the velocity meter measurement and video image analysis, respectively. The results were good agreement each other within 11% error. For fluid flow in the reactor the liquid velocity increased rapidly between the air diffuser and membrane module, but the velocity decreased during flowing of the membrane module. Also, the velocity increased as it was near from the reactor wall to the central axis. The calculated shear stress on the membrane surface showed the highest value at the center part of the module bottom side and increased as aeration rate increased. Especially, the wall shear stress increased dramatically as the aeration rate increased from 0.15 to 0.25 L/min.

Effects of Quorum Quenching on the Microbial Community of Biofilm in an Anoxic/Oxic MBR for Wastewater Treatment

  • Jo, Sung Jun;Kwon, Hyeokpil;Jeong, So-Yeon;Lee, Sang Hyun;Oh, Hyun-Suk;Yi, Taewoo;Lee, Chung-Hak;Kim, Tae Gwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.9
    • /
    • pp.1593-1604
    • /
    • 2016
  • Recently, bacterial quorum quenching (QQ) has been proven to have potential as an innovative approach for biofouling control in membrane bioreactors (MBRs) for advanced wastewater treatment. Although information regarding the microbial community is crucial for the development of QQ strategies, little information exists on the microbial ecology in QQ-MBRs. In this study, the microbial communities of biofilm were investigated in relation to the effect of QQ on anoxic/oxic MBRs. Two laboratory-scale MBRs were operated with and without QQ-beads (QQ-bacteria entrapped in beads). The transmembrane pressure increase in the QQ-MBRs was delayed by approximately 100-110% compared with conventional- and vacant-MBRs (beads without QQ-bacteria) at 45 kPa. In terms of the microbial community, QQ gradually favored the development of a diverse and even community. QQ had an effect on both the bacterial composition and change rate of the bacterial composition. Proteobacteria and Bacteroidetes were the most dominant phyla in the biofilm, and the average relative composition of Proteobacteria was low in the QQ-MBR. Thiothrix sp. was the dominant bacterium in the biofilm. The relative composition of Thiothrix sp. was low in the QQ-MBR. These findings provide useful information that can inform the development of a new QQ strategy.

Development of Influent Controlled Membrane Bioreactor for Biological Nutrient Removal on Municipal Wastewater (하수 고도처리를 위한 유로변경형 MBR공정의 개발)

  • Park, Jong-Bu;Shin, Kyung-Sook;Hur, Hyung-Woo;Kang, Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.7
    • /
    • pp.485-491
    • /
    • 2011
  • This study was performed to investigate the characteristics of nutrient removal of municipal wastewater in membrane bioreactor system. Membrane bioreactor consists of four reactors such as two intermittently anaerobic tanks, the oxic tank and the sludge solubilizaion tank with an internal recycle. The hydraulic retention time (HRT) and flux were 6.5 hours and $20.4L/m^2{\cdot}hr$ (LMH), respectively. The removal efficiency of $COD_{Cr}$, SS, TN and TP were 94.0%, 99.3%, 99.9%, 69.9%, and 66.9%, respectively. The estimated true biomass yield, specific denitrification rate (SDNR), specific nitrification rate (SNR), specific phosphorus release rate (SPRR) and specific phosphorus uptake rate (SPUR) were 0.34 kgVSS/kgBOD d, $0.067mgNO_3-N/mgVSS{\cdot}d$, $0.028mgNH_4-N/mgVSS{\cdot}d$, 16.0 mgP/gVSS d and 2.1 mgP/gVSS d, respectively. The contents of nitrogen and phosphorus of biomass were 8.9% and 3.5% on an average.

Effect of the Shape and Size of Quorum-Quenching Media on Biofouling Control in Membrane Bioreactors for Wastewater TreatmentS

  • Lee, Seonki;Lee, Sang Hyun;Lee, Kibaek;Kwon, Hyeokpil;Nahm, Chang Hyun;Lee, Chung-Hak;Park, Pyung-Kyu;Choo, Kwang-Ho;Lee, Jung-Kee;Oh, Hyun-Suk
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.10
    • /
    • pp.1746-1754
    • /
    • 2016
  • Recently, spherical beads entrapping quorum quenching (QQ) bacteria have been reported as effective moving QQ-media for biofouling control in MBRs for wastewater treatment owing to their combined effects of biological (i.e., quorum quenching) and physical washing. Taking into account both the mass transfer of signal molecules through the QQ-medium and collision efficiencies of the QQ-medium against the filtration membranes in a bioreactor, a cylindrical medium (QQ-cylinder) was developed as a new shape of moving QQ-medium. The QQ-cylinders were compared with previous QQ-beads in terms of the QQ activity and the physical washing effect under identical loading volumes of each medium in batch tests. It was found that the QQ activity of a QQ-medium was highly dependent on its specific surface area, regardless of the shape of the medium. In contrast, the physical washing effect of a QQ-medium was greatly affected by its geometric structure. The enhanced anti-biofouling property of the QQ-cylinders relative to QQ-beads was confirmed in a continuous laboratory-scale MBR with a flat-sheet membrane module.

Feasibility Study of a Shipboard Sewage Treatment Plant (Sequencing Batch Reactor and Membrane Bioreactor) in Accordance with MARPOL 73/78, Focusing Mostly on Nutrients (T-N and T-P) (MARPOL 73/78의 기준에 따른 선박오수 처리 장치(SBR 및 MBR 복합공정)의 사용 가능성 평가 : 영양염류 위주 (T-N 및 T-P))

  • Jung, Jin-Hee;Youn, Young-Nae;Choi, Young-Ik
    • Journal of Environmental Science International
    • /
    • v.25 no.9
    • /
    • pp.1233-1239
    • /
    • 2016
  • This study aimed to evaluate changes in the TN and TP removal efficiencies, depending on whether or not a settling process is applied, in a sequencing batch reactor (SBR) process with a membrane bioreactor (MBR). Nutrient removal was considered in terms of developing an advanced water treatment system for ships in accordance with water quality standards set forth by 227(64). For these purposes, the TN and TP concentrations in the inflow and outflow water were measured to calculate the TN and TP removal efficiencies, depending on whether or not a settling process was used. Water discharged from a bathroom, which was constructed for the experiment, was used as the raw water. The experiment that included a settling process was conducted twice, and the operating conditions were: aeration for 90 min, settling for 30 min, agitation for 15 min, and settling for 15 min for one experiment; and aeration for 150 min, settling for 45 min, agitation for 15 min, and settling for 15 min in the other. Operating conditions for the experiment that did not include a settling process were: aeration for 180 min and agitation for 60 min. The concentration of the mixed liquor suspended solids (MLSS) in the reactor was 3,500 mg/L, while the aeration rate was 121 L/min and the water production rate was 1.5 L/min. For the two experiments where a settling process was applied, the average TN removal efficiencies were 44.39% and 41.05%, and the average TP removal efficiencies were 47.85% and 46.04%. For the experiment in which a settling process was not applied, the average TN removal efficiency was 65.51%, and the average TP removal efficiency was 52.51%. Although the final nutrient levels did not satisfy the water quality standards of MEPC 227(64), the TN and TP removal efficiencies were higher when a settling process was not applied.

Shipboard sewage treatment using Membrane Sequence Batch Reactor (MSBR을 이용한 크루즈선 오·폐수 처리 장치)

  • Kim, In-Soo;Lee, Eon-Sung;Oh, Yeom-Jae;Kim, Eog-Jo
    • Journal of Navigation and Port Research
    • /
    • v.34 no.5
    • /
    • pp.383-388
    • /
    • 2010
  • Lab scale experiment study was carried out for biological process development on cruise. SBR(Sequence Batch Reactor), MBR(Membrane Bioreactor), and MSBR(Membrane Sequence Batch Reactor) system were investigated for practical application on shipboard sewage treatment. From the results it was suggested that MSBR system might be suitable process for cruise in terms of pollutant removal efficiency, maintenance and special environmental conditions of cruise. About 99% of BOD, 98% of COD and 99% of SS were removed in MSBR system. In addition, about 76% of total nitrogen was reduced and the total phosphorus reduction averaged 59%.