• Title/Summary/Keyword: Membrane Stress

Search Result 702, Processing Time 0.029 seconds

Solvent Tolerant Bacteria and Their Potential Use (유기용매 내성 세균과 이용가능성)

  • Joo, Woo Hong
    • Journal of Life Science
    • /
    • v.25 no.12
    • /
    • pp.1458-1469
    • /
    • 2015
  • Many organic solvent-tolerant bacteria have been isolated from all environments such as soil, waste-water, even deep sea after first isolation report of organic solvent-tolerant bacterium. Most organic solvent- tolerant isolates have been determined to be Gram-negative bacteria, because Gram-negative bacteria have inherent tolerance property toward hostile organic solvents more than Gram-positive bacteria. The mechanisms of organic solvent tolerance have been elucidated extensively using mainly organic solvent-tolerant Gram-negative bacteria. The solvent-tolerance mechanisms in Gram-positive bacteria can be found in comparatively recent research. Organic solvents exhibited different toxicity depending on the solvent, and the tolerance levels of organic solvent-tolerant bacteria toward organic solvents were also highly changeable among species and strains. Therefore, organic solvent-tolerant bacteria could coped with solvent toxicity and adapted to solvent stress through the multifactorial and multigenic adaptative strategies. They could be survived even in the hyper concentrations of organic solvents by mechanisms which include: changes in cell morphology and cell behaviour, cell surface modifications, cell membrane adaptations, solvent excretion pumps, chaperones and anti-oxidative response. The aim of this work is to review the representative solvent tolerant bacteria and the adaptative and tolerance strategies toward organic solvents in organic solvent-tolerant bacteria, and their potential industrial and environmental impact.

Bile Duct Obstruction Stimulates Lipid Peroxidation and Liver Fibrosis (Cirrhosis) in Rat (랫드에서 담도폐쇄에 의한 지질과산화와 간섬유화(경화) 촉진에 관한 연구)

  • 김기영;서의석;임진아
    • Toxicological Research
    • /
    • v.17 no.3
    • /
    • pp.187-194
    • /
    • 2001
  • The oxidative stress causes the cell damage and death and thereby, stimulates membrane lipid peroxidation. In this study, the correlation between the lipid peroxidation product and the parameter of liver fibrosis (cirrhosis) was investigated in cholestasis induced rats. The Sprague-Dawley rats were divided into 3 groups (sham: sham operation, BDL/S-I and BDL/S-II : bile duct ligation/scission) and were observed for 2 or 4 weeks. After observation period, the organs were weighed and the ratio of organ weight/body weight was calculated. Sera and liver tissue were used for the measurement of malondealdehyde (MDA), parameter of clinical biochemistry, total collagen content and the staining. The ratio of organ weight/body weight in BDL/S-I and BDL/S-II was significantly increased compared to sham operated group. Serological parameters (Alanine transaminase, Aspartate transaminase, Alkaline phosphatase and Total bilirubin) in BDL/S-I and BDL/S-II group were significantly higher than those in sham operated group. Concentration of MDA in BDL/S-I (261%) and BDL/S-II(790%) was significantly increased compared to MDA in sham operated group. And the content of hydroxyproline (hyp) in BDL/S-I and BDL/S-II group was significantly increased 2~4 times than in sham operated group. The good correlations between hyp in liver tissue and MDA in sera of sham operated group and all operated group were found (r=0.825). The significantly higher value of MDA, hyp and serological parameters in BDL/S-I and BDL/S-II group suggests the stimulation of lipid peroxidation and chronic liver damage. Especially the activation of lipid peroxidation and the stimulation of liver fibrosis was stronger in BDL/S-II group than in BDL/S-I group. The stronger fibrosis, portal-portal septum formation, the more massive bile duct proliferation in portal triads and stroma, and hepatocytes swelling were observed in liver tissue of and BDL/S-II group compared to BDL/S-I group. Conclusively, a good correlation between MDA as a lipid peroxidation marker and hyp as a liver fibrotic parameter could be connected with the process of liver fibrosis. Moreover, cholestasis condition may cause jaundice, activation of lipid peroxidation, and collagen accumulation in liver. Additionally, optimal observation period of bile duct obstruction for the screening of antioxidant and antifibrotic effect in rats would be four weeks.

  • PDF

Plastoglobule in chloroplast and its role in prenylquinone metabolism (엽록체 지질 소기관의 기능과 지질대사에서의 역할)

  • Kim, Hyun Uk;Kim, Eun-Ha;Lee, Kyeong-Ryeol;Jung, Su-Jin;Roh, Kyung Hee;Kim, Jong-Bum
    • Journal of Plant Biotechnology
    • /
    • v.40 no.3
    • /
    • pp.125-134
    • /
    • 2013
  • Lipid droplets called plastoglobules are present in all plastid types. In chloroplasts, they are surrounded by the outer lipid monolayer from and connected to thylakoid membrane. The plastoglobule core contains the neutral lipids, which includes prenylquinones, triacylglycerols, and carotenoids. During stress and various developmental stages such as senescence, the size and number of plastoglobules increase due to the accumulation of lipids. Plastoglobules proteome revealed the presence of metabolic enzymes as well as structural proteins, plastoglobulins/fibrillins. Among the metabolic enzymes, the tocopherol cyclase, VTE1 and the NADPH quinine dehydrogenase, NDC1 have demonstrated that these participate in isoprenoid lipid metabolic pathways at the plastoglobule, notably in the metabolism of prenylquinones (tocopherol, plastoquinol and phylloquinone).

Nafamostat Mesilate Inhibits TNF-${\alpha}$-Induced Vascular Endothelial Cell Dysfunction by Inhibiting Reactive Oxygen Species Production

  • Kang, Min-Woong;Song, Hee-Jung;Kang, Shin Kwang;Kim, Yonghwan;Jung, Saet-Byel;Jee, Sungju;Moon, Jae Young;Suh, Kwang-Sun;Lee, Sang Do;Jeon, Byeong Hwa;Kim, Cuk-Seong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.3
    • /
    • pp.229-234
    • /
    • 2015
  • Nafamostat mesilate (NM) is a serine protease inhibitor with anticoagulant and anti-inflammatory effects. NM has been used in Asia for anticoagulation during extracorporeal circulation in patients undergoing continuous renal replacement therapy and extra corporeal membrane oxygenation. Oxidative stress is an independent risk factor for atherosclerotic vascular disease and is associated with vascular endothelial function. We investigated whether NM could inhibit endothelial dysfunction induced by tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$ ). Human umbilical vein endothelial cells (HUVECs) were treated with TNF-${\alpha}$ for 24 h. The effects of NM on monocyte adhesion, vascular cell adhesion molecule-1 (VCAM-1) and intracellular adhesion molecule-1 (ICAM-1) protein expression, p38 mitogenactivated protein kinase (MAPK) activation, and intracellular superoxide production were then examined. NM ($0.01{\sim}100{\mu}g/mL$) did not affect HUVEC viability; however, it inhibited the increases in reactive oxygen species (ROS) production and p66shc expression elicited by TNF-${\alpha}$ (3 ng/mL), and it dose dependently prevented the TNF-${\alpha}$ -induced upregulation of endothelial VCAM-1 and ICAM-1. In addition, it mitigated TNF-${\alpha}$ -induced p38 MAPK phosphorylation and the adhesion of U937 monocytes. These data suggest that NM mitigates TNF-${\alpha}$ -induced monocyte adhesion and the expression of endothelial cell adhesion molecules, and that the anti-adhesive effect of NM is mediated through the inhibition of p66shc, ROS production, and p38 MAPK activation.

Background $K^+$ channel currents in WEHI-231 cells, immature B lymphocytes

  • Nam, Joo-Hyun;Woo, Ji-Eun;Kim, Tae-Jin;Uhm, Dae-Yong;Kim, Sung-Joon
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2003.06a
    • /
    • pp.39-39
    • /
    • 2003
  • In our previous study, WEHI-231, an immature B cell line, showed intractable increase in [C $a^{2+}$]$_{c}$ after the B-cell receptor (BCR) ligation and treatment with 2-aminoethoxydiphenylborate (2-APB), which was never observed in Bal-17, a mature B cell line (Nam et al., 2003, FEBS Lett). In this study, a whole cell voltage clamp study revealed a specific expression of a novel type of $K^{+}$ current, namely voltage-independent background-type $K^{+}$ channels (IK-bg), in WEHI-231 cells. IK-bg was dramatically increase by the application of 2-APB (50 $\square$M), which induced severe hyperpolarization of WEHI-231 from -45 ㎷ to -90 ㎷, When dialyzed with $Mg^{2+}$ and ATP-free pipette solution, a spontaneous development of IK-bg and membrane hyperpolarization were observed. IK-bg was insensitive to classical $K^{+}$ channel blockers (TEA, glibenclamide, $Ba^{2+}$(1 mM)), whereas blocked by quinine and quinidine in a voltage-dependent manner ($IC_{50}$/=6~9 $\square$M at +60㎷). Phorbol myrstate, a PKC activator, decreased the amplitude of IK-bg. Extracellular acidification (pH 6.5) slightly inhibited IK-bg. Arachidonic acid, riluzole, or hyposmotic stress could not affect the IK-bg after the full development by the intracellular dialysis with Mg-ATP-free solution. In a cell-attached mode of single channel recording from WEHI231, we found two types of voltage-independent $K^{+}$ channels with unitary conductance of 300 pS and 120 pS, respectively. Both channels showed very short mean open times and their open probabilities were increase by the application of 2-APB. In Bal-17 cells, no such $K^{+}$ current was observed in 50 cells tested. In summary, WEHI-231 immature B cells express background $K^{+}$ channels. The pharmacological properties and the large unitary conductance suggest that novel types of two-pore domain $K^{+}$ channels (2-P-K channels) might be expressed in WEHI-231, which may provide an intriguing targets of signal transduction in the immature B lymphocytes.e B lymphocytes.

  • PDF

Three-dimensional finite element analysis on the effect of maxillary incisor torque (상악 절치부-토크에 의한 치아 이동과 응력 분포에 관한 유한요소법적 연구)

  • Yoon, Hyun-Joo;Lim, Yong-Kyu;Lee, Dong-Yul;Jo, Yung-Soo
    • The korean journal of orthodontics
    • /
    • v.35 no.2 s.109
    • /
    • pp.137-147
    • /
    • 2005
  • The purpose of this study was to investigate the stress distribution in the periodontal tissue and the displacement of teeth when active torque was applied to the maxillary incisors by three-dimensional finite element analysis A three-dimensional finite element model consisted of the maxillary teeth and surrounding periodontal membrane, $.022{\times}.028$ Roth prescription bracket and stainless steel, NiTi and TMA rectangular ideal arch wires which were modeled by hexahedron elements. Applied active torques were 2, 5 and 10 degrees ThHe findings of this study showed that the reaction force acting or the bracket was the extrusion force on the mesial side of the incisors and canine and the intrusion force on the distal side of the incisors and canine. The amount of force and moment was greatest at the lateral incisor. When active anterior labial crown torque was applied. labial crown and distal tipping and Intrusion of the incisors took place. and lingual crown distal tipping and extrusion of the canine occured. An excessive force was concentrated on the lateral incisor, when the stainless steel wire was used NiTi or TMA wire is desirable for torque control.

20S-Protopanaxadiol, an aglycosylated ginsenoside metabolite, induces hepatic stellate cell apoptosis through liver kinase B1-AMP-activated protein kinase activation

  • Park, Sang Mi;Jung, Eun Hye;Kim, Jae Kwang;Jegal, Kyung Hwan;Park, Chung A;Cho, Il Je;Kim, Sang Chan
    • Journal of Ginseng Research
    • /
    • v.41 no.3
    • /
    • pp.392-402
    • /
    • 2017
  • Background: Previously, we reported that Korean Red Ginseng inhibited liver fibrosis in mice and reduced the expressions of fibrogenic genes in hepatic stellate cells (HSCs). The present study was undertaken to identify the major ginsenoside responsible for reducing the numbers of HSCs and the underlying mechanism involved. Methods: Using LX-2 cells (a human immortalized HSC line) and primary activated HSCs, MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide) assays were conducted to examine the cytotoxic effects of ginsenosides. $H_2O_2$ productions, glutathione contents, lactate dehydrogenase activities, mitochondrial membrane permeabilities, apoptotic cell subpopulations, caspase-3/-7 activities, transferase dUTP nick end labeling (TUNEL) staining, and immunoblot analysis were performed to elucidate the molecular mechanism responsible for ginsenoside-mediated cytotoxicity. Involvement of the AMP-activated protein kinase (AMPK)-related signaling pathway was examined using a chemical inhibitor and small interfering RNA (siRNA) transfection. Results and conclusion: Of the 11 ginsenosides tested, 20S-protopanaxadiol (PPD) showed the most potent cytotoxic activity in both LX-2 cells and primary activated HSCs. Oxidative stress-mediated apoptosis induced by 20S-PPD was blocked by N-acetyl-$\text\tiny L$-cysteine pretreatment. In addition, 20S-PPD concentration-dependently increased the phosphorylation of AMPK, and compound C prevented 20S-PPD-induced cytotoxicity and mitochondrial dysfunction. Moreover, 20S-PPD increased the phosphorylation of liver kinase B1 (LKB1), an upstream kinase of AMPK. Likewise, transfection of LX-2 cells with LKB1 siRNA reduced the cytotoxic effect of 20S-PPD. Thus, 20S-PPD appears to induce HSC apoptosis by activating LKB1-AMPK and to be a therapeutic candidate for the prevention or treatment of liver fibrosis.

Confirmation of Drought Tolerance of Ectopically Expressed AtABF3 Gene in Soybean

  • Kim, Hye Jeong;Cho, Hyun Suk;Pak, Jung Hun;Kwon, Tackmin;Lee, Jai-Heon;Kim, Doh-Hoon;Lee, Dong Hee;Kim, Chang-Gi;Chung, Young-Soo
    • Molecules and Cells
    • /
    • v.41 no.5
    • /
    • pp.413-422
    • /
    • 2018
  • Soybean transgenic plants with ectopically expressed AtABF3 were produced by Agrobacterium-mediated transformation and investigated the effects of AtABF3 expression on drought and salt tolerance. Stable Agrobacterium-mediated soybean transformation was carried based on the half-seed method (Paz et al. 2006). The integration of the transgene was confirmed from the genomic DNA of transformed soybean plants using PCR and the copy number of transgene was determined by Southern blotting using leaf samples from $T_2$ seedlings. In addition to genomic integration, the expression of the transgenes was analyzed by RT-PCR and most of the transgenic lines expressed the transgenes introduced. The chosen two transgenic lines (line #2 and #9) for further experiment showed the substantial drought stress tolerance by surviving even at the end of the 20-day of drought treatment. And the positive relationship between the levels of AtABF3 gene expression and drought-tolerance was confirmed by qRT-PCR and drought tolerance test. The stronger drought tolerance of transgenic lines seemed to be resulted from physiological changes. Transgenic lines #2 and #9 showed ion leakage at a significantly lower level (P < 0.01) than ${\underline{n}}on-{\underline{t}}ransgenic$ (NT) control. In addition, the chlorophyll contents of the leaves of transgenic lines were significantly higher (P < 0.01). The results indicated that their enhanced drought tolerance was due to the prevention of cell membrane damage and maintenance of chlorophyll content. Water loss by transpiration also slowly proceeded in transgenic plants. In microscopic observation, higher stomata closure was confirmed in transgenic lines. Especially, line #9 had 56% of completely closed stomata whereas only 16% were completely open. In subsequent salt tolerance test, the apparently enhanced salt tolerance of transgenic lines was measured in ion leakage rate and chlorophyll contents. Finally, the agronomic characteristics of ectopically expressed AtABF3 transgenic plants ($T_2$) compared to NT plants under regular watering (every 4 days) or low rate of watering condition (every 10 days) was investigated. When watered regularly, the plant height of drought-tolerant line (#9) was shorter than NT plants. However, under the drought condition, total seed weight of line #9 was significantly higher than in NT plants (P < 0.01). Moreover, the pods of NT plants showed severe withering, and most of the pods failed to set normal seeds. All the evidences in the study clearly suggested that overexpression of the AtABF3 gene conferred drought and salt tolerance in major crop soybean, especially under the growth condition of low watering.

Auranofin Enhances Sulforaphane-Mediated Apoptosis in Hepatocellular Carcinoma Hep3B Cells through Inactivation of the PI3K/Akt Signaling Pathway

  • Hwangbo, Hyun;Kim, So Young;Lee, Hyesook;Park, Shin-Hyung;Hong, Su Hyun;Park, Cheol;Kim, Gi-Young;Leem, Sun-Hee;Hyun, Jin Won;Cheong, Jaehun;Choi, Yung Hyun
    • Biomolecules & Therapeutics
    • /
    • v.28 no.5
    • /
    • pp.443-455
    • /
    • 2020
  • The thioredoxin (Trx) system plays critical roles in regulating intracellular redox levels and defending organisms against oxidative stress. Recent studies indicated that Trx reductase (TrxR) was overexpressed in various types of human cancer cells indicating that the Trx-TrxR system may be a potential target for anti-cancer drug development. This study investigated the synergistic effect of auranofin, a TrxR-specific inhibitor, on sulforaphane-mediated apoptotic cell death using Hep3B cells. The results showed that sulforaphane significantly enhanced auranofin-induced apoptosis by inhibiting TrxR activity and cell proliferation compared to either single treatment. The synergistic effect of sulforaphane and auranofin on apoptosis was evidenced by an increased annexin-V-positive cells and Sub-G1 cells. The induction of apoptosis by the combined treatment caused the loss of mitochondrial membrane potential (ΔΨm) and upregulation of Bax. In addition, the proteolytic activities of caspases (-3, -8, and -9) and the degradation of poly (ADP-ribose) polymerase, a substrate protein of activated caspase-3, were also higher in the combined treatment. Moreover, combined treatment induced excessive generation of reactive oxygen species (ROS). However, treatment with N-acetyl-L-cysteine, a ROS scavenger, reduced combined treatment-induced ROS production and apoptosis. Thereby, these results deduce that ROS played a pivotal role in apoptosis induced by auranofin and sulforaphane. Furthermore, apoptosis induced by auranofin and sulforaphane was significantly increased through inhibition of the phosphoinositide 3-kinase (PI3K)/Akt pathway. Taken together, the present study demonstrated that down-regulation of TrxR activity contributed to the synergistic effect of auranofin and sulforaphane on apoptosis through ROS production and inhibition of PI3K/Akt signaling pathway.

Melatonin Attenuates Mitochondrial Damage in Aristolochic Acid-Induced Acute Kidney Injury

  • Jian Sun;Jinjin Pan;Qinlong Liu;Jizhong Cheng;Qing Tang;Yuke Ji;Ke Cheng;Rui wang;Liang Liu;Dingyou Wang;Na Wu;Xu Zheng;Junxia Li;Xueyan Zhang;Zhilong Zhu;Yanchun Ding;Feng Zheng;Jia Li;Ying Zhang;Yuhui Yuan
    • Biomolecules & Therapeutics
    • /
    • v.31 no.1
    • /
    • pp.97-107
    • /
    • 2023
  • Aristolochic acid (AA), extracted from Aristolochiaceae plants, plays an essential role in traditional herbal medicines and is used for different diseases. However, AA has been found to be nephrotoxic and is known to cause aristolochic acid nephropathy (AAN). AA-induced acute kidney injury (AKI) is a syndrome in AAN with a high morbidity that manifests mitochondrial damage as a key part of its pathological progression. Melatonin primarily serves as a mitochondria-targeted antioxidant. However, its mitochondrial protective role in AA-induced AKI is barely reported. In this study, mice were administrated 2.5 mg/kg AA to induce AKI. Melatonin reduced the increase in Upro and Scr and attenuated the necrosis and atrophy of renal proximal tubules in mice exposed to AA. Melatonin suppressed ROS generation, MDA levels and iNOS expression and increased SOD activities in vivo and in vitro. Intriguingly, the in vivo study revealed that melatonin decreased mitochondrial fragmentation in renal proximal tubular cells and increased ATP levels in kidney tissues in response to AA. In vitro, melatonin restored the mitochondrial membrane potential (MMP) in NRK-52E and HK-2 cells and led to an elevation in ATP levels. Confocal immunofluorescence data showed that puncta containing Mito-tracker and GFP-LC3A/B were reduced, thereby impeding the mitophagy of tubular epithelial cells. Furthermore, melatonin decreased LC3A/B-II expression and increased p62 expression. The apoptosis of tubular epithelial cells induced by AA was decreased. Therefore, our findings revealed that melatonin could prevent AA-induced AKI by attenuating mitochondrial damage, which may provide a potential therapeutic method for renal AA toxicity.