• Title/Summary/Keyword: Membership 함수

Search Result 406, Processing Time 0.023 seconds

Designing a Reaction Model for Ozon Contactor in Advanced Water Treatment Systems (고도정수처리설비에서 오존접촉조의 반응 특성에 대한 모델 설계)

  • 박정호;이진락;서종진;이해영
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.15 no.1
    • /
    • pp.70-77
    • /
    • 2001
  • This paper present a fuzzy mxlel of describing reacton features for ozon contactor in advanced water treatn-ent systems. Input and output variables are chosen by considenng the object of ozon processing and several parameters related to management of water quahty. Dissolved organic carbon concentration, $UV_{254}$ absorptIon and $KM_NO_4$ consumption are proposed as common variables in input and outp.lt variables. Furthermore own concentration, raw water's temperature and contact time are suggested as input variables, Membership hmctions for input variables have triangular type share and the grades in each lrembership function are determined by investigating process data gathered at pilot planl The decision parts of fuzzy model have linear combination form of input variables and coefficients included in such linear equations are computedd with process clata in the sense of least square error Also fuzzy trodel suggested in this paper is partitioned by 3 independent fuzzy rnxlels using the characteristics of having no interactions armng output variables. As a result, such fuzzy mxlel has rrerits in computation and comprehension. According to simulatIon results, fuzzy moIel's outputs give almost similar data to process output under same input conditions.

  • PDF

Moving Object Tracking Using Co-occurrence Features of Objects (이동 물체의 상호 발생 특징정보를 이용한 동영상에서의 이동물체 추적)

  • Kim, Seongdong;Seongah Chin;Moonwon Choo
    • Journal of Intelligence and Information Systems
    • /
    • v.8 no.2
    • /
    • pp.1-13
    • /
    • 2002
  • In this paper, we propose an object tracking system which can be convinced of moving area shaped on objects through color sequential images, decided moving directions of foot messengers or vehicles of image sequences. In static camera, we suggests a new evaluating method extracting co-occurrence matrix with feature vectors of RGB after analyzing and blocking difference images, which is accessed to field of camera view for motion. They are energy, entropy, contrast, maximum probability, inverse difference moment, and correlation of RGB color vectors. we describe how to analyze and compute corresponding relations of objects between adjacent frames. In the clustering, we apply an algorithm of FCM(fuzzy c means) to analyze matching and clustering problems of adjacent frames of the featured vectors, energy and entropy, gotten from previous phase. In the matching phase, we also propose a method to know correspondence relation that can track motion each objects by clustering with similar area, compute object centers and cluster around them in case of same objects based on membership function of motion area of adjacent frames.

  • PDF

A Rule Extraction Method Using Relevance Factor for FMM Neural Networks (FMM 신경망에서 연관도요소를 이용한 규칙 추출 기법)

  • Lee, Seung Kang;Lee, Jae Hyuk;Kim, Ho Joon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.5
    • /
    • pp.341-346
    • /
    • 2013
  • In this paper, we propose a rule extraction method using a modified Fuzzy Min-Max (FMM) neural network. The suggested method supplements the hyperbox definition with a frequency factor of feature values in the learning data set. We have defined a relevance factor between features and pattern classes. The proposed model can solve the ambiguity problem without using the overlapping test process and the contraction process. The hyperbox membership function based on the fuzzy partitions is defined for each dimension of a pattern class. The weight values are trained by the feature range and the frequency of feature values. The excitatory features and the inhibitory features can be classified by the proposed method and they can be used for the rule generation process. From the experiments of sign language recognition, the proposed method is evaluated empirically.

Fingerprint Identification Algorithm using Pixel Direction Factor in Blocks (블록별 화소방향성분을 이용한 지문의 동일성 판별 알고리즘)

  • Cho Nam-Hyung;Lee Joo-Shin
    • The KIPS Transactions:PartB
    • /
    • v.12B no.2 s.98
    • /
    • pp.123-130
    • /
    • 2005
  • In this paper, fingerprint identification algorithm using pixel direction factor in blocks is proposed to minimize false acceptance ratio and to apply security system. The proposed algorithm is that a fingerprint image is divided by 16 blocks, then feature parameters which have direct factors of $0^{\circ},\;45^{\circ},\;90^{\circ}\;and\;135^{\circ}$ is extracted for each block. Membership function of a reference fingerprint and an input fingerprint for the extracted parameters is calculated, then identification of two fingerprint is distinguished using fuzzy inference. False acceptance ratio is evaluated about different fingerprints of In kinds regardless of sex and shape which are obtained from adults, and false rejection ratio is evaluated about fingerprints which are obtained by adding fingerprints of 10 kinds on different fingerprints of 100 kinds. The experiment results is that false acceptance ratio is average $0.34\%$ about experiment of 4,950 times, and false rejection ratio is average $3.7\%$ about experiment of 1,000 times. The proposed algerian is excellent for recognition rate and security.

Flood Estimation Using Neuro-Fuzzy Technique (Neuro-Fuzzy 기법을 이용한 홍수예측)

  • Ji, Jung-Won;Choi, Chang-Won;Yi, Jae-Eung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.128-132
    • /
    • 2012
  • 물은 생물의 생존을 위해 필수적인 요소로 인류가 시작된 이래로 물을 효율적으로 이용하고 안전하게 관리하기 위한 노력은 계속되어 왔다. 최근 지구 온난화가 주요 원인으로 알려진 국지성 집중호우의 피해는 매우 심각하며, 이로 인해 치수에 대한 중요성은 날로 커지고 있다. 지금까지 사용해 왔던 홍수 예 경보 과정은 특정 지점의 유출량을 예측하기 위해서 강우-유출 모형을 운영하였다. 그러나 물리적 모형의 경우 운영에 필요한 매개변수의 결정과정이 복잡하고, 매개변수 결정을 위해 많은 자료를 필요로 한다. 또한 그 매개변수의 결정과정은 많은 불확실성을 포함하고 있어서 모형의 운영을 위한 전처리과정과 계산과정을 거치는 동안 발생한 오차가 누적되어 결과물 속에는 많은 오차가 포함되어 있다. 본 연구에서는 기존의 홍수 예 경보 시스템의 문제점과 불확실성을 최대한 감소시키고 더 우수한 유출량 예측을 위해 neuro-fuzzy 추론 기법을 이용한 모형인 ANFIS(Adaptive Neuro-Fuzzy Inference System)를 사용하여 하천수위를 예측하였다. ANFIS는 신경회로망과 퍼지이론을 결합한 기법으로 신경회로망의 구조와 학습 능력을 이용하여 제어환경에서 획득한 입 출력 정보로부터 언어변수의 membership 함수와 제어규칙을 제어 대상에 적합하도록 자동으로 조종하는 기법이다. 본 연구에서는 ANFIS를 사용하여 탄천 하류에 위치한 대곡교의 수위를 예측하였다. 분석을 위해 2007년부터 2011년까지의 탄천 유역의 관측 강우자료와 수위 자료 중 강우강도와 지속시간, 강우 형태에 따라 7개의 강우사상을 선정하였다. 학습자료 및 보정자료의 변화에 따른 예측 오차를 비교하여 모형의 적용성과 적정성을 평가하였다. 적용결과 입력자료 구성의 경우 해당 시간의 강우량 및 수위자료와 10분 전 강우자료를 이용한 모델이 가장 우수한 예측을 보였고, 학습자료의 경우 자료의 길이가 길고, 최대홍수량이 큰 경우 가장 우수한 예측 결과를 보였다. 본 연구의 적용결과 가장 우수한 모형의 경우 30분 예측 첨두수위 오차는 0.32%, RMSE는 0.05m 이고 예측시간이 길어짐에 따라 오차가 비선형적으로 증가하는 경향을 보였다.

  • PDF

Time Series Stock Prices Prediction Based On Fuzzy Model (퍼지 모델에 기초한 시계열 주가 예측)

  • Hwang, Hee-Soo;Oh, Jin-Sung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.5
    • /
    • pp.689-694
    • /
    • 2009
  • In this paper an approach to building fuzzy models for predicting daily and weekly stock prices is presented. Predicting stock prices with traditional time series analysis has proven to be difficult. Fuzzy logic based models have advantage of expressing the input-output relation linguistically, which facilitates the understanding of the system behavior. In building a stock prediction model we bear a burden of selecting most effective indicators for the stock prediction. In this paper information used in traditional candle stick-chart analysis is considered as input variables of our fuzzy models. The fuzzy rules have the premises and the consequents composed of trapezoidal membership functions and nonlinear equations, respectively. DE(Differential Evolution) identifies optimal fuzzy rules through an evolutionary process. The fuzzy models to predict daily and weekly open, high, low, and close prices of KOSPI(KOrea composite Stock Price Index) are built, and their performances are demonstrated.

Design of a Fuzzy Classifier by Repetitive Analyses of Multifeatures (다중 특징의 반복적 분석에 의한 퍼지 분류기의 설계)

  • 신대정;나승유
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.6 no.3
    • /
    • pp.14-24
    • /
    • 1996
  • A fuzzy classifier which needs various analyses of features using genetic algorithms is proposed. The fuzzy classifier has a simple structure, which contains a classification part based on fuzzy logic theory and a rule generation ation padptu sing genetic algorithms. The rule generation part determines optimal fuzzy membership functions and inclusior~ or exclusion of each feature in fuzzy classification rules. We analyzed recognition rate of a specific object, then added finer features repetitively, if necessary, to the object which has large misclassification rate. And we introduce repetitive analyses method for the minimum size of string and population, and for the improvement of recognition rates. This classifier is applied to three examples of the classification of iris data, the discrimination of thyroid gland cancer cells and the recognition of confusing handwritten and printed numerals. In the recognition of confusing handwritten and printed numerals, each sample numeral is classified into one of the groups which are divided according to the sample structure. The fuzzy classifier proposed in this paper has recognition rates of 98. 67% for iris data, 98.25% for thyroid gland cancer cells and 96.3% for confusing handwritten and printed numeral!;.

  • PDF

Fuel Injection Control of Vehicles Using Fuzzy Control Technique (퍼지 제어 기법을 이용한 차량의 연료 제어)

  • Kim, Kwang-Baek;Woo, Young-Woon;Ha, Sang-An
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.5
    • /
    • pp.1013-1018
    • /
    • 2007
  • In general, there are many sensors for fuel injection control such as an air flow sensor, an air intake temperature sensor, a cooling water temperature sensor, a throttle position sensor, and a motor position sensor. In this paper, we proposed a method for controlling the amount of fuel consumption in cars using fuzzy control technique by temperature change of an air intake temperature sensor and air-fuel ratio, the ratio of air and fuel mixture. In the proposed method, the amount of fuel injection is controlled by fuzzy membership functions and fuzzy inference rules established for air-fuel ratio, air intake temperature, and final fuel compensation, after computing air-fuel values using each amount of air intake and each amount of fuel injection. We verified that the proposed method is more efficient than conventional methods in fuel injection control from the results of the simulation program.

Image Recognition by Fuzzy Logic and Genetic Algorithms (퍼지로직과 유전 알고리즘을 이용한 영상 인식)

  • Ryoo, Sang-Jin;Na, Chul-Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.5
    • /
    • pp.969-976
    • /
    • 2007
  • A fuzzy classifier which needs various analyses of features using genetic algorithms is proposed. The fuzzy classifier has a simple structure, which contains a classification part based on fuzzy logic theory and a rule generation part using genetic algorithms. The rule generation part determines optimal fuzzy membership functions and inclusion or exclusion of each feature in fuzzy classification rules. We analyzed recognition rate of a specific object, then added finer features repetitively, if necessary, to the object which has large misclassification rate. And we introduce repetitive analyses method for the minimum size of string and population, and for the improvement of recognition rates. This classifier is applied to two examples of the recognition of iris data and the recognition of Thyroid Gland cancer cells. The fuzzy classifier proposed in this paper has recognition rates of 98.67% for iris data and 98.25% for Thyroid Gland cancer cells.

Removal of Super-Refraction Echoes using X-band Dual-Polarization Radar Parameters (X-밴드 이중편파 레이더 변수를 이용한 과대굴절에코 제거)

  • Seo, Eun-Kyoung;Kim, Dong Young
    • Journal of the Korean earth science society
    • /
    • v.40 no.1
    • /
    • pp.9-23
    • /
    • 2019
  • Super-refraction of radar beams tends to occur primarily under a particular vertical structure of temperature and water vapor pressure profiles. A quality control process for the removal of anomalous propagation (AP) ehcoes are required because APs are easily misidentified as precipitation echoes. For this purpose, we collected X-band polarimetric radar parameters (differential reflectivity, cross-correlation coefficient, and differential phase) only including non-precipitation echoes (super-refraction and clear-sky ground echoes) and precipitation echoes, and compared the echo types regarding the relationships among radar reflectivities, polarimetric parameters, and the membership functions. We developed a removal algorithm for the non-precipitation echoes using the texture approach for the polarimetric parameters. The presented algorithm is qualitatively validated using the S-band Jindo radar in Jeollanam-do. Our algorithm shows the successful identification and removal of AP echoes.