• Title/Summary/Keyword: Melting method

Search Result 833, Processing Time 0.029 seconds

A study on the growth mechanism of rutile single crystal by skull melting method and conditions of RF generator (스컬용융법에 의한 루틸 단결정 성장메커니즘과 RE generator 조건에 관한 연구)

  • Seok jeong-Won;Choi Jong-Koen
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.5
    • /
    • pp.175-181
    • /
    • 2005
  • Ingots of rutile single crystals were grown by the skull melting method, and their characteristics were compared in terms of melt-dwelling time for each melt. The method is based on direct inductive heating of an electrically conducted melt by an alternating RF field, and the heating is performed by absorption of RF energy. $TiO_2$ is an insulator at room temperature but its electric conductivity increases elevated temperature. Therefore, titanium metal ring(outside diameter : 6cm, inside diameter : 4cm, thickness 0.2cm) was embedded into $TiO_2$, powder (anatase phase, CERAC, 3N) for initial RF induction heating. Important factors of the skull melting method are electric resistivity of materials at their melting point, working frequency of RF generator and cold crucible size. In this study, electric resitivity of $TiO_2$, $(10^{-2}\~10^{-1}\;{\Omega}{\cdot}m)$ at its melting point was estimated by compairing the electric resitivities of alumina and zirconia. Inner diameter and height of the cold crucible was 11 and 14cm, respectively, which were determined by considering of the Penetration depth $(0.36\~1.13cm)$ and the frequency of RF generator.

Evaluation of Mechanical Characteristic and Biological Stability of Dental Alloys by the Manufacture Method (가공방법에 따른 치과용 합금의 기계적 특성 및 생물학적 안정성 평가)

  • Kim, Chi-Young;Chung, In-Sung
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.3
    • /
    • pp.293-301
    • /
    • 2011
  • The material of the dental prosthesis was required bio-compatibility for biological, chemical, and physical stabilities. This study was conducted the stability evaluation of mechanical, biological characteristics through comparing Co-Cr alloy(SC group), Ti alloy(ST group) made by the selective laser melting method with Co-Cr alloy(CC group), Ni-Cr alloy(CN group) made by the casting method. Modulus of elasticity for mechanical characteristic evaluation was measured by the tensile test. And we conducted the release material analysis using lactic acid-NaCl solution for the evaluation of biological stability and were observed cytotoxicity through the content of this release medium. Taking these results into account, the Co-Cr alloy made by the selective laser melting method was observed modulus of elasticity higher than he Co-Cr alloy made by the casting method. And the Co-Cr alloy made by the selective laser melting method had more superior biological stability than the other groups as the result of cytotoxicity evaluation through the release material analysis. By this results, we think that alloys made by the selective laser melting method can be applied as materials for making the dental prosthesis.

Finite element solutions of natural convection in porous media under the freezing process (동결과정을 포함한 다공층에서 자연대류에 대한 유한요소 해석)

  • Lee, Moon-Hee;Choi, Chong-Wook;Seo, Suk-Jin;Park, Chan-Guk
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.51-56
    • /
    • 2000
  • The Finite Element Solutions Is reported on solid-liquid phase change in porous media with natural convection including freezing. The model is based on volume averaged transport equations, while phase change is assumed to occur over a small temperature range. The FEM (Finite Element Method) algorithm used in this study is 3-step time-splitting method which requires much less execution time and computer storage the velocity-pressure integrated method and the penalty method. And the explicit Lax-Wendroff scheme is applied to nonlinear convective term in the energy equation. For natural convection including melting and solidification the numerical results show reasonable agreement with FDM (Finite Difference Method) results.

  • PDF

Numerical Prediction of Phase Change within the Molten Steel with Thin Slab Casting (박슬라브 주형에 따른 용강내의 상변화현상에 대한 수치적 해석)

  • 최원록;유홍선;최영기
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.3
    • /
    • pp.14-22
    • /
    • 2000
  • A numerical analysis has been performed on the two-dimensional rectangular gallium melting problem using the enthalpy method. The major advantage of this method is that the physical domain is discretized with fixed grids without transforming variables and the interface conditions of phase change are accounted for the definition of suitable source terms in the governing equations. But in the fixed method, there is some ambiguity in defining the porosity constant which has no physical interpretation. If the velocity correction is included in the momentum equation, for the appropriate range of porosity constant, the realistic predictions are obtained. The object of the present work is to predict the phase change within the molten steel with thin riser slab using the modified enthalpy-porosity method. The computational procedures for predicting velocity and temperature are based on the finite volume method and the non-staggered grid system. The influence of natural convection on the melting process is considered. A comparison with the experimental results shows that the modified method is better than the previous one.

  • PDF

Melting and draining tests on glass waste form for the immobilization of Cs, Sr, and rare-earth nuclides using a cold-crucible induction melting system

  • Choi, Jung-Hoon;Lee, Byeonggwan;Lee, Ki-Rak;Kang, Hyun Woo;Eom, Hyeon Jin;Park, Hwan-Seo
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1206-1212
    • /
    • 2022
  • Cold-crucible induction melting (CCIM) technology has been intensively studied as an advanced vitrification process for the immobilization of highly radioactive waste. This technology uses high-frequency induction to melt a glass matrix and waste, while the outer surface of the crucible is water-cooled, resulting in the formation of a frozen glass layer (skull). In this study, for the fabrication of borosilicate glass waste form, CCIM operation test with 60 kg of glass per batch was conducted using surrogate wastes composed of Cs, Sr, and Nd as a representative of highly radioactive nuclides generated during spent nuclear fuel management. A 60 kg-scale glass waste form was successfully fabricated through melting and draining processes using a CCIM system, and its physicochemical properties were analyzed. In particular, to enhance the controllability and reliability of the draining process, an air-cooling drain control method that can control draining through air-cooling near drain holes was developed, and its validity for draining control was verified. The method can offer controllability on various draining processes, such as molten salt or molten metal draining processes, and can be applied to a process requiring high throughput draining.

Improved Thermal Bonding Behaviour of Polypropylene Non-wovens by Blending Different Molecular Weights of PP

  • Deopura, B.L.;Mattu, Ankush;Jain, Anurag;Alagirusamy, R.
    • Fibers and Polymers
    • /
    • v.3 no.1
    • /
    • pp.38-42
    • /
    • 2002
  • Polypropylene filaments were spun from a mixture of PP chips of two different Melt Flow Index (MFI) (3 MFI and 35 MFI). A significant difference was observed in the melting characteristics of the resultant filaments from either of the individual components as observed from the DSC. The main difference being in the degree of melting achieved at any temperature in the initial stages of the melting range, which was found to be higher in case of the filaments spun from the b]end. These filaments were then thermally bonded using silicon oil bath and heated roller method. Subsequently the bond strength of the filaments was measured on the Instron Tensile Tester using the loop technique. The values of the world strengths obtained from the blend were compared with those made from the individual component. It was found that the bond strength of the bonds obtained from the blended filament at a given temperature was higher than that of the bonds made from the filaments of either of the individual components, which is also suggested by the DSC curves. The difference in the bond strength was found to be as high as 25% in case of the blend with 60:40 composition ratios of the 3 MFI and 35 MFI components respectively.

Synthetic and characterization of Na-tetrasilicic fluorine mica by skull melting method (스컬용융법에 의한 Na사규소운모 합성 및 특성평가)

  • Seok, Jeong-Won;Choi, Jong-Geon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.4
    • /
    • pp.190-195
    • /
    • 2009
  • Na-tetrasilicic fluorine mica powders were synthesized by skull melting method. The staring materials having chemical composition of $Mg_3(OH)_2Si_4O_{10}:Na_2SiF_6:SiO_2=8.3:24.8:66.9$ mol% were charged into a cold crucible of 13 cm in diameter and 14cm in height and heated by R.F. generator at working frequency of 2.84 MHz. The materials were maintained for 1hr as a molten state and cooled down in the container. In this study, the specific electric resistance of mica was estimated and the columnar and plate shaped mica were synthesized.

An Analysis of the I-t Characteristic of Low Voltage Distribution Line Fuse Using the FEM (유한 요소법을 이용한 저압 배전용 전선퓨즈의 I-t 특성 해석)

  • 황명환;박두기;이세현;한상옥
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.11 no.6
    • /
    • pp.74-80
    • /
    • 1997
  • In this paper, we deal with the I -t characteristic of low voltage distribution fuse (line fuse). That fuse element has two parts;One is low temperature melting element(LTME) to put up with over current and the other is high temperature melting element (HTME) which put up with large current. Melting charateristic of fuse is determined by L TME and HTME. So we verified their properties of fuse design, mathematically, by simulating the thermal and electric characteristics of each other. We simulated the I-t characteristic of line fuse by using the numerical method;Finite Element Method(FEM). Then, we could acquire very similar result at the HTME and L TME area when compared the simlation result with experimental one.

  • PDF

Analysis of rutile single crystals grown by skull melting method (Skull melting법에 의해 성장된 rutile 단결정 분석)

  • Seok, Jeong-Won;Choi, Jong-Koen
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.5
    • /
    • pp.181-188
    • /
    • 2006
  • Rutile single crystals grown by skull melting method were cut parallel and perpendicular to growth axis, and both sides of the cut wafers (${\phi}5.5mmx1.0mm$) were then polished to be mirror surfaces. The black wafers were changed into pale yellow color by annealing in air at 1200 and $1300^{\circ}C$ for $3{\sim}15\;and\;10{\sim}50$ hours, respectively. After annealing, structural and optical properties were examined by specific gravity (S.G), SEM-electron backscattered pattern (SEM-EBSP), X-ray diffraction (XRD), FT-IR transmittance spectra, laser Raman spectroscopy (LRS), photoluminescence (PL) and X-ray photoelectron spectroscopy (XPS). These results are analyzed increase of weight in air, decrease of weight in water and specific gravity, shown secondary phase of needle shape, diffusion of oxygen ion and increase of $Ti^{3+}$. From the above results, we suggest that the skull melting method grown rutile single crystals contain defect centers such as $O_v,\;Ti^{3+},\;O_v-Ti^{3+}$ interstitials and $F^+-H^+$.

Rapid Manufacturing of Microscale Thin-walled Structures by Phase Change Workholding Method (상변화 고정방식에 의한 마이크로 박벽 구조물의 쾌속제작)

  • Shin, Bo-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.9 s.174
    • /
    • pp.188-193
    • /
    • 2005
  • To provide the various machining materials with excellent quality and dimensional accuracy, high -speed machining is very useful tool as one of the most effective rapid manufacturing processes. However, high-speed machining is not suitable for microscale thin-walled structures because of the lack of the structure stiffness to resist the cutting force. A new method which is able to make a very thin-walled structure rapidly will be proposed in this paper. This method is composed two processes, high-speed machining and filling process. Strong workholding force comes out of the solidification of filling materials. Low-melting point metal alloys are used in order to minimize the thermal effect during phase change and to hold arbitrary shape thin-walled structures quickly during high-speed machining. To verify the usefulness of this method, we will show some applications, for examples thin -wall cylinders and hemispherical shells, and compare the experimental results to analyze the dimensional accuracy of typical parts of the structures.