• Title/Summary/Keyword: Melting heat transfer

Search Result 157, Processing Time 0.027 seconds

Heat and Flow Characteristics During Melting Process of a PCM Inside a Liquid Flexitank for Cargo Containers (화물 컨테이너용 액상 백 내부 PCM의 용융 과정에 대한 열유동 특성 해석)

  • Lilong Sun;Joon Hyun Kim;Jaehoon Na;Jaeyong Sung
    • Journal of the Korean Society of Visualization
    • /
    • v.22 no.1
    • /
    • pp.6-17
    • /
    • 2024
  • This study examined the natural convection heat flow characteristics of the melting process of PCM (palm oil) inside a liquid flexitank(bag) for a cargo container. A film heating element was installed on the bottom of the container, and numerical analysis was performed under heat flux conditions of 1,000 to 4,000 W/m2. As a result, the melt interface of the PCM rises to a nearly horizontal state over time. In the initial stage, conduction heat transfer dominates, but gradually waves at the cell flow and melt interfaces are formed due to natural convection heat transfer. As melting progresses, the Ra number increases parabolically, and the Nu number increases linearly and has a constant value. The Nu number rises slowly under low heat flux conditions, whereas under high heat flux conditions, the Nu number rises rapidly. As the heat flux increases, the internal temperature oscillation of the liquid phase after melting increases. However, under high heat flux conditions, excess heat exceeding the latent heat is generated, and the temperature of the molten liquid is raised, so the increase in melting rate decreases. Therefore, the appropriate heating element specification applied to a 20-ton palm oil container is 2,000 W/m2.

Numerical Study of Heat Transfer with Selective Phase Change in Two Different Phase Change Materials (이종 PCM의 선택적 상변화 시의 열전달 해석)

  • Kim, Hyung Kuk;Lee, Dong Gyu;Peck, Jong Hyeon;Kang, Chaedong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.9
    • /
    • pp.477-483
    • /
    • 2013
  • A numerical analysis of solid-liquid phase change was performed on a heat transfer module which consisted of circulating water path (BRINE), heat transfer plate (HTP) and phase change material (PCM) layers, such as high temperature PCM (HPCM, $78{\sim}79^{\circ}C$) and low temperature PCM (LPCM, $28{\sim}29^{\circ}C$). There were five arrangements, consisting of BRINE, HTP, LPCM and HPCM layers in the heat transfer module. The time and heat transfer rate for melting/solidification was compared to their arrangements, against each other. As results, the numerical time without convection was longer than the experimental one for melting/solidification. Moreover, the melting/solidification with the BRINE I-LPCM-BRINE II-HPCM arrangement was faster(10 hours) than the others; HPCM-BRINE-LPCM, BRINE I-HPCM-LPCM-BRINE II one.

Heat Transfer Analysis in High Efficiency Electric Melting Furnace (고효율/친환경 전기 용해로 내의 열전달 해석)

  • Seol, Dong-Il;Lee, Byung-Hwa;Jeon, Chung-Hwan;Chang, Young-June
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2285-2290
    • /
    • 2007
  • The main objective of this study is to analyze the heat transfer characteristics in the electric melting furnace. Local temperatures are measured at various location in the furnace using the B-type thermocouples. In this paper, the numerical simulation was performed using the ANSYS software, and compared with experimental data. Mathematical heat transfer model for the prediction of temperature distribution has been developed by considering the thermal radiation among heating element, crucible and insulating materials. The results show that the temperature distributions predicted by the numerical simulation agree with experimental results comparatively.

  • PDF

Study of Convective Flow and Heat Transfer Phenomena in the Phase Change Material (상변화물질의 대류유동 및 열전달 현상에 관한 연구)

  • Shon, Sang-Suk;Lee, Chae-Moon;Lee, Jae-Heon;Yim, Chang-Soon
    • Solar Energy
    • /
    • v.6 no.2
    • /
    • pp.43-53
    • /
    • 1986
  • The objective of this study is to report on the characterics of convective flow and heat transfer during metling process in order to provide design information for thermal energy storage systems which use phase change material. In present study, flow and heat transfer characteristics of the Phase Change Material in the Open Top Model (O.T.M) and in the Closed Top Model (C.T.M) were studied numerically by the control volume formulation using the algebraic non-orthogonal coordinate transformation. For the calculation procedure, the physical properties of fluid are assumed to be constant except density which is linely dependent on temperature in the bouyancy term of momentum equations. At start of melting process, the thickness of melting layer is assumed from the Stefan Problem assumption. The heat transfer results of Open Top Model and Closed Top Model are compared with the parameters of Grashof number and aspect ratio. It was found that heat transfer phenomena in melted region was greatly affected by buoyancy-driven natural convection and the melting distance of Open Top Model at the upper region is greater than that of Closed Top Model.

  • PDF

Heat Transfer Characteristics of Micro-encapsulated Phase Change Material Slurry (잠열 마이크로캡슐 슬러리의 열전달 특성)

  • Park, Ki-Won;Kim, Myoung-Jun
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.193-198
    • /
    • 2005
  • The present experiments have been performed for obtaining the melting heat transfer characteristics of micro-encapsulated solid-liquid phase change material and water mixed slurry flow in a circular tube heated with constant wall heat flux. The phase change material having a low melting point was selected for a domestic cooling system in the present study. The governing parameters were found to be latent heat material concentration, heat flux, and the slurry velocity. The experimental results revealed that the increase of tube wall temperature of latent microcapsule slurry was lower than that of water caused by the heat absorption of fusion.

  • PDF

Effect of Phase Change Heat Transfer Process by Acoustic Streaming (음향흐름이 상변화 열전달 과정에 미치는 영향)

  • Yang Ho Dong;Oh Yool Kwon
    • Journal of the Korean Society of Visualization
    • /
    • v.1 no.2
    • /
    • pp.52-57
    • /
    • 2003
  • The present paper investigated the effect of ultrasonic vibrations on the melting process of a phase-change material (PCM). The melting process in the square cavity with a heated vertical wall has been studied in terms of acoustic streaming. In the present study, applying with ultrasonic vibrations to the liquid were found to induce acoustic streaming which was clearly observed using by a particle image velocimetry (PIV) and a thermal infrared camera. The experimental results revealed that acoustic streaming could accelerate the melting process as much as 2.5 times, compared to the rate of natural melting (i. e., the melting without acoustic streaming). In addition, temperature and Nusselt numbers over time provided conclusive evidence of the important role of the acoustic streaming on the melting phenomena of the PCM.

  • PDF

Transient heat transfer and crust evolution during debris bed melting process in the hypothetical severe accident of HPR1000

  • Chao Lv;Gen Li;Jinchen Gao;Jinshi Wang;Junjie Yan
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.3017-3029
    • /
    • 2023
  • In the late in-vessel phase of a nuclear reactor severe accident, the internal heat transfer and crust evolution during the debris bed melting process have important effects on the thermal load distribution along the vessel wall, and further affect the reactor pressure vessel (RPV) failure mode and the state of melt during leakage. This study coupled the phase change model and large eddy simulation to investigate the variations of the temperature, melt liquid fraction, crust and heat flux distributions during the debris bed melting process in the hypothetical severe accident of HPR1000. The results indicated that the heat flow towards the vessel wall and upper surface were similar at the beginning stage of debris melting, but the upward heat flow increased significantly as the development of the molten pool. The maximum heat flux towards the vessel wall reached 0.4 MW/m2. The thickness of lower crust decreased as the debris melting. It was much thicker at the bottom region with the azimuthal angle below 20° and decreased rapidly at the azimuthal angle around 20-50°. The maximum and minimum thicknesses were 2 and 90 mm, respectively. By contrast, the distribution of upper crust was uniform and reached stable state much earlier than the lower crust, with the thickness of about 10 mm. Moreover, the sensitivity analysis of initial condition indicated that as the decrease of time interval from reactor scram to debris bed dried-out, the maximum debris temperature and melt fraction became larger, the lower crust thickness became thinner, but the upper crust had no significant change. The sensitivity analysis of in-vessel retention (IVR) strategies indicated that the passive and active external reactor vessel cooling (ERVC) had little effect on the internal heat transfer and crust evolution. In the case not considering the internal reactor vessel cooling (IRVC), the upper crust was not obvious.

Theoretical Study on Snow Melting Process on Porous Pavement System by using Heat and Mass Transfer (열전달 및 물질전달을 이용한 공극 발열도로에서의 융설 해석에 대한 이론적 연구)

  • Yun, Taeyoung
    • International Journal of Highway Engineering
    • /
    • v.17 no.5
    • /
    • pp.1-10
    • /
    • 2015
  • PURPOSES : A finite difference model considering snow melting process on porous asphalt pavement was derived on the basis of heat transfer and mass transfer theories. The derived model can be applied to predict the region where black-ice develops, as well as to predict temperature profile of pavement systems where a de-icing system is installed. In addition, the model can be used to determined the minimum energy required to melt the ice formed on the pavement. METHODS : The snow on the porous asphalt pavement, whose porosity must be considered in thermal analysis, is divided into several layers such as dry snow layer, saturated snow layer, water+pavement surface, pavement surface, and sublayer. The mass balance and heat balance equations are derived to describe conductive, convective, radiative, and latent transfer of heat and mass in each layer. The finite differential method is used to implement the derived equations, boundary conditions, and the testing method to determine the thermal properties are suggested for each layer. RESULTS: The finite differential equations that describe the icing and deicing on pavements are derived, and we have presented them in our work. The framework to develop a temperature-forecasting model is successfully created. CONCLUSIONS : We conclude by successfully creating framework for the finite difference model based on the heat and mass transfer theories. To complete implementation, laboratory tests required to be performed.

Effects of Subcooling and Natural Convection on the Melting inside a Horizontal Tube (수평원관내에서 과냉각 및 자연대류가 융해과정에 미치는 영향)

  • 서정세;김찬중;노승탁
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.8
    • /
    • pp.2079-2087
    • /
    • 1993
  • The effects of subcooling and natural convection are studied numerically on the melting process of an initially subcooled phase-change medium filled inside a horizontal circular cylinder. It is postulated that melting continues with the tube wall kept at a constant temperature and with the unmelted solid core fixed. Primary emphasis is placed on the evolution of interface morphology, the local/overall heat transfer rate at the tube wall and at the interface, and the structure of natural convection. The numerical results are mainly presented in terms of the Rayleigh and subcooling numbers. As the degree of subcooling intensifies, the melting rate and the movement of the interface are impeded but the interfaces are of similar shape with the passage of time. The heat transfer characteristics are found to be mostly governed by the formation pattern of natural convection in the liquid phase. Good agreement with available experimental data is found.

Effect of the Height Change on the Melting Heat Transfer in a Rectangular Enclosure (정사각형 단면을 갖는 용기에서 단면의 크기 변화가 융해 열전달에 미치는 영향)

  • Han, Jin Ho;Ro, Sung Tack
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.2 no.3
    • /
    • pp.208-217
    • /
    • 1990
  • A rectangular test section is devised by assuming two dimensional melting of a solid phase change material heated from two sides which are maintained at constant temperature and allowing a free expansion due to density difference between solid and liquid. The timewise melting shape is recorded photographically by the shadow graph method for several experimental conditions. The analysis shows that the melting process consists of four regimes. At first, the pure conduction heat transfer is dominant, and as time goes by natural convection grows and plays a role greatly. Experiments are carried out varying not only the wall temperature but height of the wall. Each effect of them on the melting process is obtained in the form of combination of dimensionless parameters, $Ste^{0.8}\;FoRa^{0.2}$. An algebraic correlation is suggested, which predicts the melted fraction well.

  • PDF