• Title/Summary/Keyword: Melt Retention

Search Result 25, Processing Time 0.019 seconds

Multi-layered Gap Measurement on In-Vessel Cerium Retention Using Ultrasonic Wave Reflective Pattern Analysis and Frequency Diversity Signal Processing (초음파 반사 패턴과 주파수 대역 분할 신호처리를 이용한 다층구조인 노내 간극 측정)

  • Koo, Kil-Mo;Sim, Cheul-Mu;Kim, Jong-Hwan;Kim, Sang-Baik;Kim, Hee-Dong;Park, Chi-Seung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.4
    • /
    • pp.314-321
    • /
    • 2000
  • A gap between a $Al_2O_3/Fe$ thermite and lower head vessel is formed in the lower-plenum arrested vessel attack(LAVA) experiment which is the 1st phase study of simulation of naturally arrested vessel attack in vessel(SONATA-IV). The gap measurement using a conventional ultrasonic method would be lack of a reliability due to the structure complexity and the metallurgical grain size change of the lower head HAZ occurred by a thermite $Al_2O_3/Fe$ melt or a $Al_2O_3$ melt at $2300^{\circ}C$. The grain echoes having false signals and lower S/N ratio signals are detected due to a multiple scattering, a mode conversion and an attenuation of a ultrasonic resulted from at the interface of increased grain size zone. In this test, the signals pattern was classified to understand the behavior of the ultrasonic in a multi-layer specimen of solid-liquid-solid of assuming that the thermite and the lower head vessel is immersed. The polarity threshold algorithm of frequency diversity gives us the enhancement about 6dB of the ratio S/N.

  • PDF

Physical and Mechanical Properties and Fire-endurance Characteristics of Recycled Particleboards

  • Suh, Jin-Suk;Han, Tae-Hyung;Park, Joo-Saeng;Park, Jong-Young
    • Journal of the Korea Furniture Society
    • /
    • v.19 no.6
    • /
    • pp.475-486
    • /
    • 2008
  • In this study, fire-retardant chemicals were melt with mixed composition ratios of dibasic ammonium phosphate and each half of boric acid and borax in hot water, in which hammer-milled chips were immersed to increase swelling of waste particleboards. Also, fire-retardant treated particles from sawn lumber chip and recycled particleboard chip were composed in ratio of 70:30 in core layer to improve boards' properties. Retention ratio of fire-retardant chemicals for the particles for face layer was high due to high specific surface area, and that of sawn lumber chips was somewhat higher than that of recycled particleboard chips. The mixture of particles from sawn lumber chips and recycled PB of 70:30 in weight ratio exceeded bending strength of 100 $kgf/cm^2$. It seemed that the relatively greater portions of dibasic ammonium phosphate affected adversely to dimensional stability, however fire-retardants treatment resulted in distinct effect lowering formaldehyde emission such as $E_0$ type(0.5mg/$\ell$ or less) in KS F 3104. In fire-retardancy, the recycled boards with a mixed ratio of dibasic ammonium phosphate to boric acid borax(50:50 mixture) of 70% to 30% in weight satisfied fire-retardancy 3rd grade in KS F 2271, and also this composition from cone calorimeter test met same standard grade figuring total heat release of 4.6MJ/$m^2$.

  • PDF

Compressional Properties of PTT BCF and Nylon BCF Carpets (PTT BCF카펫과 나일론 BCF카펫의 압축특성(壓縮特性)에 관(關)한 연구(硏究))

  • Yun, Myung-Hui;Kim, Jong-Jun;Jeon, Dong-Won
    • Journal of Fashion Business
    • /
    • v.8 no.5
    • /
    • pp.115-124
    • /
    • 2004
  • PTT(polytrimethylene terephthalate) is a thermoplastic that can be melt-spun into fibers and has extensive applications in carpets, textiles and apparel, engineering thermoplastics, nonwovens, and films or sheets. This polymer combines the good properties of nylon and polyester. Compared with other synthetic fibers such as nylon and acrylic, the PTT fibers feel softer, dye easier with vibrant colors, stretch and recover better. Moreover, the PTT fibers for carpets resist most stainings, clean better, and dry faster. The PTT was first patented in 1941, but it was not until the 1990's, when Shell Chemicals developed the practical method of producing PDO, the raw material for PTT. Many studies have been done including the retention of carpet texture using an image analysis technique, or compressional resilience of the carpet for long term use. In this study, PTT and nylon BCF carpets were compared in terms of the compressional properties including the resilience, using one of the KES system for repetitive measurements. The compression resilience(RC) values of the PTT BCF carpets far exceed those of nylon 6 BCF carpets. The RC values of the PTT BCF carpet(cut) specimens are $42{\sim}45%$ for 5 successive compression deformations, while those of the nylon BCF carpet specimens(cut) are $26{\sim}28%$. There is also a similar trend in the RC values for the other type of carpet which is the loop type. This resilience is one of the important factors of carpet usage evaluation.

Numerical Study on Two-phase Natural Circulation Flow by External Reactor Vessel Cooling of iPOWER (혁신형 안전경수로의 원자로용기 외벽냉각 시 2상 자연순환 유동에 대한 수치해석적 연구)

  • Park, Yeon-Ha;Hwang, Do Hyun;Lee, Yeon-Gun
    • Journal of Energy Engineering
    • /
    • v.28 no.4
    • /
    • pp.103-110
    • /
    • 2019
  • The domestic innovative power reactor named iPOWER will employ the passive molten corium cooling system(PMCCS) to cool down and stabilize the core melt in the severe accident. The final design concept of the PMCCS is yet to be determined, but the in-vessel retention through external reactor vessel cooling has been also considered as a viable strategy to cope with the severe accident. In this study, the two-phase natural circulation flow established between the reactor vessel and the insulation was simulated using a thermal-hydraulic system code, MARS-KS. The flow path of cooling water was modeled with one-dimensional nodes, and the boundary condition of the heat load from the molten core was defined to estimate the naturally-driven flow rate. The evolution of major thermal-hydraulic parameters were also evaluated, including the temperature and the level of cooling water, the void fraction around the lower head of the reactor vessel, and the heat transfer mode on its external surface.

A Study on the Fabrication Process and Melt Infiltration of Salt Core in Squeeze Casting Method (스퀴즈캐스팅용 Salt Core의 제조 및 용탕침투성에 관한 연구)

  • Kim, Ki-Bae;Noh, Sang-Woo;Lee, Ho-In;Nam, Tae-Woon
    • Journal of Korea Foundry Society
    • /
    • v.17 no.4
    • /
    • pp.402-410
    • /
    • 1997
  • Developing a salt core for squeeze casting process, two different salt cores(pure salt core and mixed salt core) were fabricated and investigated. Pure salt core was composed of 100% NaCl and mixed salt core was made by mixtures of NaCl with MgO(1%), $Na_2B_4O_7$(2%), and talc(1%) as a binder or a strengthening agent. Salt cores were compacted to various theoretical density, heat treated, and then squeeze-cast with molten Al alloy(AC8A). The compression strength of salt cores were measured and the squeeze-cast products were examined for shape retention, infiltration of molten metal into the cores, and microstructures. The shape of salt core compacted at above 75% of the theoretical density was maintained stably. The higher theoretical density of salt cores gave higher compression strength, and the compression strength of mixed salt core was higher than that of pure salt core. Namely at 90% theoretical density, the compression strength of mixed salt core was $6.3 kg/mm^2$, compared to $4.6 kgmm^2$ for pure salt core. At a squeeze casting pressure of $1000 kg/cm^2$, molten Al alloy was infiltrated into pure salt core of under 85% of the theoretical density. At squeeze casting pressure of $1000 kg/cm^2$, only mixed salt core above 90% of the theoretical density were valid, but the shape of the core was altered in the case of pure salt core at 90% of theoretical density. A key factor for developing a salt core for squeeze casting process was estimated as the ultimate compressive strength of salt core.

  • PDF