• Title/Summary/Keyword: Melanogenesis

Search Result 511, Processing Time 0.029 seconds

Inhibition of Melanogenesis by Dioctyl Phthalate Isolated from Nigella glandulifera Freyn

  • Nguyen, Duc T. M.;Nguyen, Dung H.;Hwa-La, Lyun;Lee, Hyang-Bok;Shin, Jeong-Hyun;Kim, Eun-Ki
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.10
    • /
    • pp.1585-1590
    • /
    • 2007
  • Although a number of melanogenesis inhibitors have recently been reported and used as cosmetic additives, none is completely satisfactory, leaving a need for novel skin-depigmenting agents. Thus, to develop a novel skin depigmenting agent from natural sources, the inhibition of melanogenesis by Chinese plants was evaluated. A methanolic extract of Nigella glandulifera Freyn was found to inhibit the melanin synthesis of murine B16F10 melanoma cells by 43.7% and exhibited a low cytotoxicity (8.1%) at a concentration of $100\;{\mu}g/ml$. Thus, to identify the melanogenesis-inhibiting mechanism, the inhibitory activity towards tyrosinase, the key enzyme of melanogenesis, was further evaluated, and the results showed inhibitory effects on the activity of intracellular tyrosinase yet not on mushroom tyrosinase. Finally, to isolate the compounds with a hypopigmenting capability, activity-guided isolation was performed, and Dioctyl phthalate identified as inhibiting melanogenesis.

The effects of Caffeoylserotonin on inhibition of melanogenesis through the downregulation of MITF via the reduction of intracellular cAMP and acceleration of ERK activation in B16 murine melanoma cells

  • Kim, Hye-Eun;Ishihara, Atsushi;Lee, Seong-Gene
    • BMB Reports
    • /
    • v.45 no.12
    • /
    • pp.724-729
    • /
    • 2012
  • In this study, we evaluated the anti-melanogenesis effects of Caffeoylserotonin (CaS) in B16 melanoma cells. Treatment with CaS reduced the melanin content and tyrosinase (TYR) activity in B16 melanoma cells in a dose-dependent manner. CaS inhibited the expression of melanogenesis-related proteins, including microphthalmia-associated transcription factor (MITF), TYR, and tyrosinase-related protein-1 (TRP-1), but not TRP-2. ${\alpha}$-MSH is known to interact with melanocortin 1 receptor (MC1R) thus activating adenylyl cyclase and increasing intracellular cyclic AMP (cAMP) levels. Furthermore, cAMP activates extracellular signal-regulated kinase 2 (ERK2) via phosphorylation, which phosphorylates MITF, thereby targeting the transcription factor to proteasomes for degradation. The CaS reduced intracellular cAMP levels to unstimulated levels and activated ERK phosphorylation within 30 min. The ERK inhibitor PD98059 abrogated the suppressive effect of CaS on ${\alpha}$-MSH-induced melanogenesis. Based on this study, the inhibitory effects of CaS on melanogenesis are derived from the downregulation of MITF signaling via the inhibition of intracellular cAMP levels, as well as acceleration of ERK activation.

Role of $K^+$-$Cl^-$-cotransporter in the Apigenin-induced Stimulation of Melanogenesis in B16 Melanoma Cells (B16 흑색종세포에서 아피제닌에 의한 멜라닌 합성 촉진효과에 미치는 칼륨-염소이온수송체의 역할)

  • Lee, Yong-Soo
    • YAKHAK HOEJI
    • /
    • v.52 no.6
    • /
    • pp.500-506
    • /
    • 2008
  • Apigenin, a natural flavonoid found in a variety of vegetables and fruits, has been shown to possess many biological functions. In this study we found that apigenin stimulated melanin synthesis in a dose-dependent manner in B16 murine melanoma cells. Since in our previous study $K^+$-$Cl^-$-cotransport (KCC) has been shown to mediate the mechanism of action of apigenin in neuronal cells, we further investigated the role of KCC in the melanogenesis-stimulating effect of apigenin in B16 cells. At nontoxic concentrations apigenin induced $Cl^-$-dependent $K^+$ efflux, a hallmark of KCC activity, which was markedly prevented by a specific KCC inhibitor R-(+)-[(2-n-butyl-6,7-dichloro-2-cyclopentyl-2,3-dihydro-1-oxo-1H-inden-5-yl)oxy]acetic acid (DIOA). These results indicate that KCC is functionally present, and activated by apigenin in the B16 cells. In addition, the apigenin-induced stimulation of melanogenesis was also significantly inhibited by DIOA. NEthylmaleimide (NEM), a known KCC activator, induced $Cl^-$ efflux and stimulated melanogenesis in a concentration-dependent fashion. Both effects of NEM were significantly inhibited by DIOA. Taken together, these results suggest that apigenin can modulate melanogenesis through the activation of a membrane ion transporter, KCC in B16 cells. These results further suggest that apigenin may be a good candidate in the therapeutic strategy for hypopigmentation disorders, such as vitiligo.

Inhibitory Effects of Pine Cone (Pinus densiflora) on Melanogenesis in B16F10 Melanoma Cells

  • Lee, Seung-Hyun;Jang, Tae-Won;Choi, Ji-Soo;Mun, Jeong-Yun;Park, Jae-Ho
    • Korean Journal of Plant Resources
    • /
    • v.32 no.4
    • /
    • pp.275-281
    • /
    • 2019
  • The pathological condition of excessive melanogenesis causing freckles, melasma, senile lentigo, pigmented acne scars, and cancer has a critical impact on the wellness of individuals. The mechanism of melanogenesis is related to the expression of melanogenic enzymes. Here, we evaluated the inhibitory effect of pine cone (Pinus densiflora) extracts on melanogenesis. P. densiflora, the Korean Red Pine, is the predominant tree species in the cool, temperate forests of northeast Asia, occurring in pure stands across Korea, Japan, and parts of northern China and Russia. P. densiflora leaves, pollen, and bark have been widely used for traditional medicine, or edible purposes. However, pine cones are rarely used as natural raw materials, although they contain many bioactive phytochemicals. The pine cone ethyl acetate fraction (PEF) showed no toxicity to B16F10 cells at a concentration of less than $100{\mu}g/mL$. PEF inhibited the expression of microphthalmiaassociated transcription factor (MITF), tyrosinase and tyrosinase-related factors in B16F10 cells treated with 3-Isobutyl1-methylxanthine (IBMX). These results suggest that pine cones can be used as an effective natural melanogenesis inhibitory agent.

Melanogenesis Inhibitory Activity of Epicatechin-3-O-Gallate Isolated from Polygonum amphibium L.

  • Lee, Young Kyung;Hwang, Buyng Su;Hwang, Yong;Lee, Seung Young;Oh, Young Taek;Kim, Chul Hwan;Nam, Hyeon Ju;Jeong, Yong Tae
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.1
    • /
    • pp.24-31
    • /
    • 2021
  • This study aimed to investigate the melanogenesis inhibitory activity of epicatechin-3-O-gallate (ECG) isolated from Polygonum amphibium L. ECG was isolated from the ethanol extract of P. amphibium L, and its chemical structure was determined using spectroscopic methods such as LC-ESI-MS, 1D-NMR, and UV spectroscopy. ECG inhibited the melanogenesis of B16F10 cells in a dose-dependent manner. Particularly, it decreased the melanin content by 27.4% at 200 µM concentration, compared with the control, in B16F10 cells, without causing cytotoxicity. It is noteworthy that the expression of three key proteins, including tyrosinase, tyrosinase-related protein-1 (TRP-1), TRP-2, and microphthalmia-associated transcription factor (MITF), involved in melanogenesis, is significantly inhibited by ECG. The ECG isolated in this study caused the inhibition of body pigmentation and tyrosinase activity in vivo in the zebrafish model. These results suggest that the ECG isolated from P. amphibium L. is an effective anti-melanogenesis agent.

Linarin enhances melanogenesis in B16F10 cells via MAPK and PI3K/AKT signaling pathways

  • Oh, So-Yeon;Kang, Jin Kyu;Hyun, Chang-Gu
    • Journal of Applied Biological Chemistry
    • /
    • v.64 no.4
    • /
    • pp.447-451
    • /
    • 2021
  • In this study, we discovered for the first time that linarin, a flavonoid compound, enhances melanin biosynthesis in B16F10 cells, and subsequently elucidated the underlying mechanism of linarin-induced melanogenesis. Linarin showed no cytotoxicity at a concentration of 42 μM and significantly increased intracellular tyrosinase activity and melanin content in B16F10 cells. Mechanistic analysis showed that linarin increased the expression of tyrosinase, tyrosinase-related protein 1 (TRP-1), and microphthalmia-associated transcription factor (MITF) that are related to melanogenesis. Moreover, linarin decreased the phosphorylation of extracellular signal-regulated kinase (ERK) and protein kinase B (AKT). Finally, we evaluated the effect of the structure-activity relationship of linarin and its aglycone on melanogenesis. The results indicated that linarin enhances the expression of melanogenic proteins by activating MITF expression via the modulation of mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3K), and protein kinase B signaling pathways in B16F10 cells, thereby enhancing melanogenesis.

Diarylpropionitrile inhibits melanogenesis via protein kinase A/cAMP-response element-binding protein/microphthalmiaassociated transcription factor signaling pathway in α-MSH-stimulated B16F10 melanoma cells

  • Lee, Hyun Jeong;An, Sungkwan;Bae, Seunghee;Lee, Jae Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.2
    • /
    • pp.113-123
    • /
    • 2022
  • Diarylpropionitrile (DPN), a selective agonist for estrogen receptor β (ERβ), has been reported to regulate various hormonal responses through activation of ERβ in tissues including the mammary gland and brain. However, the effect of DPN on melanogenesis independent of ERβ has not been studied. The aim of this study is to examine the possibility of anti-melanogenic effect of DPN and its underlying mechanism. Melanin contents and cellular tyrosinase activity assay indicated that DPN inhibited melanin biosynthesis in alpha-melanocyte stimulating hormone-stimulated B16F10 melanoma cell line. However, DPN had no direct influence on in vitro tyrosinase catalytic activity. On the other hand, 17β-estradiol had no effect on inhibition of melanogenesis, suggesting that the DPN-mediated suppression of melanin production was not related with estrogen signaling pathway. Immunoblotting analysis showed that DPN down-regulated the expression of microphthalmia-associated transcription factor (MITF), a central transcription factor of melanogenesis and its down-stream genes including tyrosinase, tyrosinase-related protein (TRP)-1, and TRP-2. Also, DPN attenuated the phosphorylation of protein kinase A (PKA) and cAMP-response element-binding protein (CREB). Additionally, DPN suppressed the melanin synthesis in UVB-irradiated HaCaT conditioned media culture system suggesting that DPN has potential as an anti-melanogenic activity in physiological conditions. Collectively, our data show that DPN inhibits melanogenesis via downregulation of PKA/CREB/MITF signaling pathway.

Influence of Gungguitang-gamibang on the Regulation of Melanogenesis through JNK Signaling Pathway in B16 Melanoma Cells

  • Jeong, Jae-Seong;Ju, Sung-Min;Kim, Kun-Jung;Kim, Eun-Cheol;Park, Hyun;Jeon, Byung-Hun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.1
    • /
    • pp.196-203
    • /
    • 2005
  • Gunggui-tang has been used for the therapy of blood disorders in Hangbang medicine for long time. Also, Glycyrrhiza uralensis has been used for deficientblood patterns with an irregular pulse or palpitations, coughing and wheezing, and heat or cold in the lungs. Melanogenesis is a physiological process resulting in the synthesis of melanin pigments. We investigated whether the water extract of Gunggui-tang plus G. uralensis inhibited melanogenesis in B16 melanoma cells. Because the molecular events connecting the regulation in tyrosinase activity remain to be elucidated, we also aimed to determine whether Gunggui-tang gamibang(GTG) affects tyrosinase at the gene activation level in the cells. First, we showed that GTG inhibited the tyrosinase promoter activity and further, down-regulated the tyrosinase protein activity in ${\alpha}-melanocyte-stimulating$ hormone $({\alpha}-MSH)-treated$ B16 melanoma cells. GTG also resulted in a decrease of melanin content in MSH-induced melanogenesis, indicating that GTG may be a useful drug in studying the regulation of melanogenesis. The pretreatment of GTG significantly prevented phosphotransferase activity of c-Jun N-terminal kinase (JNK1) and transcriptional activation of activating protein-1 (AP-1) in MSH-treated B16 melanoma cells. These findings indicate that GTG inhibits melanogenesis of B16 melanoma cells via suppression of phosphotransferase activity of JNK1 and transcriptional activation of AP-1.

Fermented Unpolished Black Rice (Oryza sativa L.) Inhibits Melanogenesis via ERK, p38, and AKT Phosphorylation in B16F10 Melanoma Cells

  • Sangkaew, Orrarat;Yompakdee, Chulee
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.8
    • /
    • pp.1184-1194
    • /
    • 2020
  • Melanin is a major factor that darkens skin color as one of the defense systems to prevent the harmful effects of UV light. However, darkened skin from the localized or systemic accumulation of melanin is viewed in many cultures as an esthetic problem. Consequentially, searching for anti-melanogenic agents from natural sources is very popular worldwide. Previous screening of fermented rice products, obtained from various rice cultivars fermented with different sources of loog-pang (Thai traditional fermentation starter), revealed that the highest ability to reduce the melanin content in B16F10 melanoma cells was from unpolished black rice fermented with a defined starter mixture of microbes isolated from loog-pang E11. The aim of this study was to investigate the mechanism of the fermented unpolished black rice (FUBR) on the inhibition of melanogenesis in B16F10 melanoma cells. The strongest reduction of cellular melanin content was found in the FUBR sap (FUBRS). The melanin reduction activity was consistent with the significant decrease in the intracellular tyrosinase activity. The FUBRS showed no cytotoxic effect to B16F10 melanoma or Hs68 human fibroblast cell lines. It also significantly reduced the transcript and protein expression levels of tyrosinase, tyrosinase-related protein 1 (TYRP-1), TYRP-2, and microphthalmia-associated transcription factor. Furthermore, it induced a significantly increased level of phosphorylated ERK, p38 and Akt signaling pathways, which likely contributed to the negative regulation of melanogenesis. From these results, a model for the mechanism of FUBRS on melanogenesis inhibition was proposed. Moreover, these results strongly suggested that FUBRS possesses anti-melanogenesis activity with high potential for cosmeceutical application as a skin depigmenting agent.

Inhibitory Effect of Water Extract of Adenophorae Radix on the Melanogenesis (사삼 물 추출액의 멜라닌 형성 억제 효과)

  • Kang Hyun-sung;Lim Hong-jin;Park Min-chul;Lim Kyu-sang;Kim Nam-kwen
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.17 no.1
    • /
    • pp.82-93
    • /
    • 2004
  • Recently many efforts were focused to understanding the mechanical insights of melanogenesis to develop the agents for hyper-pigmentation and hypo-pigmentation. In the melanin biosynthetic pathway, tyrosinase is the rate limiting enzyme, and ${\alpha}$-melanocyte stimulating hormone(MSH) or cAMP-elevating agents stimulate melanogenesis and enhance the melanin synthesis and the tyrosinase activity. The author has analyzed the effects of Radix Trichosanthis on the basal Melanogenic activities of Bl6/F10 mouse melanoma cells, and on the ${\alpha}$-MSH or forskolin-induced melanogenesis. Radix Trichosanthis alone markedly suppressed melanin content and tyrosinase activity in a dose-dependent manner. Pretreatment of the cells with Radix Trichosanthis also suppressed the increase of ${\alpha}$-MSH(10 nM) or forskolin(20 ${\mu}$M)-induced melanin content and tyrosinase activity. The decrease in the tyrosinase activity was paralled by a decrease in the abundance of tyrosinase protein and tyrosinase promoter activity. Pretreatment of the cells with Radix Trichosanthis also inhibited the increase of forskolin(20 ${\mu}$M) induced the amount of tyrosinase protein and tyrosinase promoter activity. The results of DOPA staining revealed that pretreatment of the cells with Radix Trichosanthis showed less intensity than B16 melanoma cells stimulated with ${\alpha}$-MSH or forskolin. These results suggest that Radix Trichosanthis inhibits melanogenesis and abrogates ${\alpha}$-MSH and cAMP-induced melanogenesis in B16 melanoma cells.

  • PDF