• Title/Summary/Keyword: Mel-Spectrogram

Search Result 41, Processing Time 0.018 seconds

A Multi-speaker Speech Synthesis System Using X-vector (x-vector를 이용한 다화자 음성합성 시스템)

  • Jo, Min Su;Kwon, Chul Hong
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.4
    • /
    • pp.675-681
    • /
    • 2021
  • With the recent growth of the AI speaker market, the demand for speech synthesis technology that enables natural conversation with users is increasing. Therefore, there is a need for a multi-speaker speech synthesis system that can generate voices of various tones. In order to synthesize natural speech, it is required to train with a large-capacity. high-quality speech DB. However, it is very difficult in terms of recording time and cost to collect a high-quality, large-capacity speech database uttered by many speakers. Therefore, it is necessary to train the speech synthesis system using the speech DB of a very large number of speakers with a small amount of training data for each speaker, and a technique for naturally expressing the tone and rhyme of multiple speakers is required. In this paper, we propose a technology for constructing a speaker encoder by applying the deep learning-based x-vector technique used in speaker recognition technology, and synthesizing a new speaker's tone with a small amount of data through the speaker encoder. In the multi-speaker speech synthesis system, the module for synthesizing mel-spectrogram from input text is composed of Tacotron2, and the vocoder generating synthesized speech consists of WaveNet with mixture of logistic distributions applied. The x-vector extracted from the trained speaker embedding neural networks is added to Tacotron2 as an input to express the desired speaker's tone.