• Title/Summary/Keyword: Mel-Cepstrum

Search Result 65, Processing Time 0.018 seconds

Study on the Performance of Spectral Contrast MFCC for Musical Genre Classification (스펙트럼 대비 MFCC 특징의 음악 장르 분류 성능 분석)

  • Seo, Jin-Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.4
    • /
    • pp.265-269
    • /
    • 2010
  • This paper proposes a novel spectral audio feature, spectral contrast MFCC (SCMFCC), and studies its performance on the musical genre classification. For a successful musical genre classifier, extracting features that allow direct access to the relevant genre-specific information is crucial. In this regard, the features based on the spectral contrast, which represents the relative distribution of the harmonic and non-harmonic components, have received increased attention. The proposed SCMFCC feature utilizes the spectral contrst on the mel-frequency cepstrum and thus conforms the conventional MFCC in a way more relevant for musical genre classification. By performing classification test on the widely used music DB, we compare the performance of the proposed feature with that of the previous ones.

Front-End Processing for Speech Recognition in the Telephone Network (전화망에서의 음성인식을 위한 전처리 연구)

  • Jun, Won-Suk;Shin, Won-Ho;Yang, Tae-Young;Kim, Weon-Goo;Youn, Dae-Hee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.57-63
    • /
    • 1997
  • In this paper, we study the efficient feature vector extraction method and front-end processing to improve the performance of the speech recognition system using KT(Korea Telecommunication) database collected through various telephone channels. First of all, we compare the recognition performances of the feature vectors known to be robust to noise and environmental variation and verify the performance enhancement of the recognition system using weighted cepstral distance measure methods. The experiment result shows that the recognition rate is increasedby using both PLP(Perceptual Linear Prediction) and MFCC(Mel Frequency Cepstral Coefficient) in comparison with LPC cepstrum used in KT recognition system. In cepstral distance measure, the weighted cepstral distance measure functions such as RPS(Root Power Sums) and BPL(Band-Pass Lifter) help the recognition enhancement. The application of the spectral subtraction method decrease the recognition rate because of the effect of distortion. However, RASTA(RelAtive SpecTrAl) processing, CMS(Cepstral Mean Subtraction) and SBR(Signal Bias Removal) enhance the recognition performance. Especially, the CMS method is simple but shows high recognition enhancement. Finally, the performances of the modified methods for the real-time implementation of CMS are compared and the improved method is suggested to prevent the performance degradation.

  • PDF

Intruder Detection System Based on Pyroelectric Infrared Sensor (PIR 센서 기반 침입감지 시스템)

  • Jeong, Yeon-Woo;Vo, Huynh Ngoc Bao;Cho, Seongwon;Cuhng, Sun-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.5
    • /
    • pp.361-367
    • /
    • 2016
  • The intruder detection system using digital PIR sensor has the problem that it can't recognize human correctly. In this paper, we suggest a new intruder detection system based on analog PIR sensor to get around the drawbacks of the digital PIR sensor. The analog type PIR sensor emits the voltage output at various levels whereas the output of the digitial PIR sensor is binary. The signal captured using analog PIR sensor is sampled, and its frequency feature is extracted using FFT or MFCC. The extracted features are used for the input of neural networks. After neural network is trained using various human and pet's intrusion data, it is used for classifying human and pet in the intrusion situation.

Vocabulary Recognition Post-Processing System using Phoneme Similarity Error Correction (음소 유사율 오류 보정을 이용한 어휘 인식 후처리 시스템)

  • Ahn, Chan-Shik;Oh, Sang-Yeob
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.7
    • /
    • pp.83-90
    • /
    • 2010
  • In vocabulary recognition system has reduce recognition rate unrecognized error cause of similar phoneme recognition and due to provided inaccurate vocabulary. Input of inaccurate vocabulary by feature extraction case of recognition by appear result of unrecognized or similar phoneme recognized. Also can't feature extraction properly when phoneme recognition is similar phoneme recognition. In this paper propose vocabulary recognition post-process error correction system using phoneme likelihood based on phoneme feature. Phoneme likelihood is monophone training phoneme data by find out using MFCC and LPC feature extraction method. Similar phoneme is induced able to recognition of accurate phoneme due to inaccurate vocabulary provided unrecognized reduced error rate. Find out error correction using phoneme likelihood and confidence when vocabulary recognition perform error correction for error proved vocabulary. System performance comparison as a result of recognition improve represent MFCC 7.5%, LPC 5.3% by system using error pattern and system using semantic.

Phoneme-Boundary-Detection and Phoneme Recognition Research using Neural Network (음소경계검출과 신경망을 이용한 음소인식 연구)

  • 임유두;강민구;최영호
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.11a
    • /
    • pp.224-229
    • /
    • 1999
  • In the field of speech recognition, the research area can be classified into the following two categories: one which is concerned with the development of phoneme-level recognition system, the other with the efficiency of word-level recognition system. The resonable phoneme-level recognition system should detect the phonemic boundaries appropriately and have the improved recognition abilities all the more. The traditional LPC methods detect the phoneme boundaries using Itakura-Saito method which measures the distance between LPC of the standard phoneme data and that of the target speech frame. The MFCC methods which treat spectral transitions as the phonemic boundaries show the lack of adaptability. In this paper, we present new speech recognition system which uses auto-correlation method in the phonemic boundary detection process and the multi-layered Feed-Forward neural network in the recognition process respectively. The proposed system outperforms the traditional methods in the sense of adaptability and another advantage of the proposed system is that feature-extraction part is independent of the recognition process. The results show that frame-unit phonemic recognition system should be possibly implemented.

  • PDF