• Title/Summary/Keyword: Meju soybean fermentation

Search Result 110, Processing Time 0.026 seconds

A Plan for Improving Quality of Traditional Soybean Paste (전통된장의 품질개선에 관한 연구)

  • 최동원
    • The Korean Journal of Food And Nutrition
    • /
    • v.16 no.3
    • /
    • pp.218-223
    • /
    • 2003
  • This study is proceeded on the development of standard method for making soybean paste by Korean traditional method. Fermentation condition of Meju was 1) Pre-fermentation : 30 days in about 20$^{\circ}C$ room, 2) Main fermentation : 5 days in 30$^{\circ}C$ or upper temperature, 3) Post fermentation and drying : 30 days in well sunlightened room in January. Meju was soaked in 18% salt solution(Meju 7kg/salt solution 20L) for 35~40 days (from late February to early April) and after soaking Meju was filtered as unsoluble solute and crushed and put into traditional Korean receptacle(named 'Dok'). Crushed Meju was stored from early April to mid September and Meju was changed into soybean paste(Doen-jang). During fermentation amino acid nitrogen in Doen-jang was slightly increased in early period and decreased lately. It has been proved that by panel test soybean paste made by the method suggested in this study was more excellent than commercially fermented soybean paste. This study has presented the possibility of commercial production of soybean paste made by traditional method.

Taxonomic Variations of Bacterial and Fungal Communities depending on Fermentation Temperature in Traditional Korean Fermented Soybean Food, Doenjang

  • Eunhye Jo;Hyeyoung Lee;Younshil Song;Jaeho Cha
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.4
    • /
    • pp.863-870
    • /
    • 2024
  • Meju, a fermented soybean brick, is a key component in soybean foods like doenjang and ganjang, harboring a variety of microorganisms, including bacteria and fungi. These microorganisms significantly contribute to the nutritional and sensory characteristics of doenjang and ganjang. Amplicon-based next-generation sequencing was applied to investigate how the microbial communities of meju fermented at low and high temperatures differ and how this variation affects the microbial communities of doenjang, a subsequently fermented soybean food. Our metagenomic data showed distinct patterns depending on the fermentation temperature. The microbial abundance in the bacterial community was increased under both temperatures during the fermentation of meju and doenjang. Weissella was the most abundant genus before the fermentation of meju, however, it was replaced by Bacillus at high temperature-fermented meju and lactic acid bacteria such as Weissella and Latilactobacillus at low temperature-fermented meju. Leuconostoc, Logiolactobacillus, and Tetragenococcus gradually took over the dominant role during the fermentation process of doenjang, replacing the previous dominant microorganisms. Mucor was dominant in the fungal community before and after meju fermentation, whereas Debaryomyces was dominant under both temperatures during doenjang fermentation. The dominant fungal genus of doenjang was not affected regardless of the fermentation temperature of meju. Strong correlations were shown for specific bacteria and fungi linked to specific fermentation temperatures. This study helps our understanding of meju fermentation process at different fermentation temperatures and highlights different bacteria and fungi associated with specific fermentation periods which may influence the nutritional and organoleptic properties of the final fermented soybean foods doenjang.

The Effect of Korean Soysauce and Soypaste Making on Soybean Protein Quality Part I. Chemical Changes During Meju Making (재래식 간장 및 된장 제조가 대두 단백질의 영양가에 미치는 영향 제1보 재래식 메주 제조의 성분변화)

  • Lee, Cherl-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.12-18
    • /
    • 1976
  • Fermented soybean Mejus were prepared in the laboratory with varying lengths of fermentation and the changes in the Chemical composition during the Meju making were determined. The moisture of cooked soybean was gradually evaporated during the Meju fermentation, and after 2 months of fermentation the water level reached to the level of the raw soybean. The concentrations of crude fat, crude protein and ash of the dry matter of soybean did not change considerably during soaking, cooking and Meju fermentation of up to 3 months, whereas carbohyrates decreased significantly during soaking and Meju fermentation. The percentage retention of the nutrients were 58% for carbohydrates and 93% for crude fat and crude protein. The nitrogen solubility of soybean decreased drastically during cooking, from 79% to 21%, while Meju fermentation increased it to approximately 30% in the first week and this level remained constant for the duration of the fermentation. The concentration of free amino nitrogen in total nitrogen of soybean decreased during cooking, from 7% to 3%, but fermentation of Meju liberated it to the level of raw soybean. The concentration of free amino-nitrogen in the total-N of soybean was increased by cooking and further increased during Meju fermentation. The amino acid pattern of soybean did not change significantly during soaking, cooking and the Meju fermentation up to 3 months. Serine and the basic amino acids, lysine, arginine and histidine, decreased to the range $81{\sim}87%$ of the raw soybean during the first month of Meju fermentation and thereafter remained almost constant. The total amino acid per 16g nitrogen was 99 g incooked soybean and 93 g in 1 month Meju, indicating a 6% reduction.

  • PDF

Enzymatic Activity and Amino Acids Production of Predominant Fungi from Traditional Meju during Soybean Fermentation

  • Dong Hyun Kim;Byung Hee Chun;Jae-Jung Lee;Oh Cheol Kim;Jiye Hyun;Dong Min Han;Che Ok Jeon;Sang Hun Lee;Sang-Han Lee;Yong-Ho Choi;Seung-Beom Hong
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.3
    • /
    • pp.654-662
    • /
    • 2024
  • To investigate the effect of the predominant fungal species from Korean traditional meju and doenjang on soybean fermentation, the enzymatic activity and amino acid production of twenty-two fungal strains were assessed through solid- and liquid-state soybean fermentation. Enzymatic activity analyses of solid-state fermented soybeans revealed different enzyme activities involving protease, leucine aminopeptidase (LAP), carboxypeptidase (CaP), glutaminase, γ-glutamyl transferase (GGT), and amylase, depending on the fungal species. These enzymatic activities significantly affected the amino acid profile throughout liquid-state fermentation. Strains belonging to Mucoromycota, including Lichtheimia, Mucor, Rhizomucor, and Rhizopus, produced smaller amounts of total amino acids and umami-producing amino acids, such as glutamic acid and aspartic acid, than strains belonging to Aspergillus subgenus circumdati. The genera Penicillium and Scopulariopsis produced large amounts of total amino acids and glutamic acid, suggesting that these genera play an essential role in producing umami and kokumi tastes in fermented soybean products. Strains belonging to Aspergillus subgenus circumdati, including A. oryzae, showed the highest amino acid content, including glutamic acid, suggesting the potential benefits of A. oryzae as a starter for soybean fermentation. This study showed the potential of traditional meju strains as starters for soybean fermentation. However, further analysis of processes such as the production of G-peptide for kokumi taste and volatile compounds for flavor and safety is needed.

The Changes of $\alpha$-galactosidase Activities and Stachyose and Raffinose Contents During Fermentation of Soybeans (대두의 발효에 따른 $\alpha$-Galactosidase활성 및 Stachyose, Raffinose 함량 변화)

  • Kim, Sung-Soo;Yoon, Sun
    • Korean journal of food and cookery science
    • /
    • v.14 no.5
    • /
    • pp.509-512
    • /
    • 1998
  • Changes in the contents of stachyose and raffinose were determined during soybean fermentation. ${\alpha}$-Galactosidase activities were also monitored in soybean and its fermented products. The stachyose contents were 31.8239 mg/g of soybean, 4.2217 mg/g of Meju, and 2.1184 mg/g of Doenjang. The raffinose contents were 2.6914 mg/g of soybean, 1.7413 mg/g of Meju, and negligible of Doenjang. ${\alpha}$-Galactosidase activities was distinct in soybean and Meju. They were 14.5954 units/mg protein of soybean, 13.1489 units/mg protein of Meju, and 1.9157 units/mg protein of Doenjang. The results suggested that the decrease of stachyose and raffinose contents in fermented soy products were due to the ${\alpha}$-galactosidase activity.

  • PDF

Aspergillus Associated with Meju, a Fermented Soybean Starting Material for Traditional Soy Sauce and Soybean Paste in Korea

  • Hong, Seung-Beom;Kim, Dae-Ho;Samson, Robert A.
    • Mycobiology
    • /
    • v.43 no.3
    • /
    • pp.218-224
    • /
    • 2015
  • Aspergillus is an important fungal genus used for the fermentation of Asian foods; this genus is referred to as koji mold in Japan and China. A. oryzae, A. sojae, and A. tamari are used in the production of miso and shoyu in Japan, but a comprehensive taxonomic study of Aspergillus isolated from Meju, a fermented soybean starting material for traditional soy sauce and soybean paste in Korea, has not been conducted. In this study, various Aspergillus species were isolated during a study of the mycobiota of Meju, and the aspergilli were identified based on phenotypic characteristics and sequencing of the ${\beta}$-tubulin gene. Most strains of Aspergillus were found to belong to the following sections: Aspergillus (n = 220), Flavi (n = 213), and Nigri (n = 54). The most commonly identified species were A. oryzae (n = 183), A. pseudoglaucus (Eurotium repens) (n = 81), A. chevalieri (E. chevalieri) (n = 62), A. montevidensis (E. amstelodami) (n = 34), A. niger (n = 21), A. tamari (n = 15), A. ruber (E. rubrum) (n = 15), A. proliferans (n = 14), and A. luchuensis (n = 14); 25 species were identified from 533 Aspergillus strains. Aspergillus strains were mainly found during the high temperature fermentation period in the later steps of Meju fermentation.

Bacterial Community Migration in the Ripening of Doenjang, a Traditional Korean Fermented Soybean Food

  • Jeong, Do-Won;Kim, Hye-Rim;Jung, Gwangsick;Han, Seulhwa;Kim, Cheong-Tae;Lee, Jong-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.5
    • /
    • pp.648-660
    • /
    • 2014
  • Doenjang, a traditional Korean fermented soybean paste, is made by mixing and ripening meju with high salt brine (approximately 18%). Meju is a naturally fermented soybean block prepared by soaking, steaming, and molding soybean. To understand living bacterial community migration and the roles of bacteria in the manufacturing process of doenjang, the diversity of culturable bacteria in meju and doenjang was examined using media supplemented with NaCl, and some physiological activities of predominant isolates were determined. Bacilli were the major bacteria involved throughout the entire manufacturing process from meju to doenjang; some of these bacteria might be present as spores during the doenjang ripening process. Bacillus siamensis was the most populous species of the genus, and Bacillus licheniformis exhibited sufficient salt tolerance to maintain its growth during doenjang ripening. Enterococcus faecalis and Enterococcus faecium, the major lactic acid bacteria (LAB) identified in this study, did not continue to grow under high NaCl conditions in doenjang. Enterococci and certain species of coagulase-negative staphylococci (CNS) were the predominant acid-producing bacteria in meju fermentation, whereas Tetragenococcus halophilus and CNS were the major acid-producing bacteria in doenjang fermentation. We conclude that bacilli, LAB, and CNS may be the major bacterial groups involved in meju fermentation and that these bacterial communities undergo a shift toward salt-tolerant bacilli, CNS, and T. halophilus during the doenjang fermentation process.

Effects of Dietary Supplementation of a Meju, Fermented Soybean Meal, and Aspergillus oryzae for Juvenile Parrot Fish (Oplegnathus fasciatus)

  • Kim, Sung-Sam;Galaz, German Bueno;Pham, Minh Anh;Jang, Ji-Woong;Oh, Dae-Han;Yeo, In-Kyu;Lee, Kyeong-Jun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.6
    • /
    • pp.849-856
    • /
    • 2009
  • In this study, dietary supplementations of Korean Meju, fermented soybean meal (F-SBM) by Aspergillus oryzae, and A. oryzae itself were evaluated on growth performance, feed utilization, immune responses and phosphorus availability in juvenile parrot fish, a marine aquaculture fish species. Four isonitrogenous and isocaloric diets were formulated to contain 8% soybean meal (control diet), 4% Meju (50% soybean meal was replaced by Meju), 4% F-SBM (50% soybean meal was replaced by F-SBM), or 0.08% A. oryzae itself. One of the four experimental diets was fed to triplicate groups of fish for 8 weeks. At the end of the feeding trial, no significant differences were found in growth performances and feed utilization. Red blood cell counts in the fish fed the A. oryzae diet were significantly higher than that of fish fed the control diet. The antioxidant activity in Meju diet was significantly higher than that of the control and A. oryzae diets. Fish fed Meju and F-SBM diets showed numerically higher antioxidant activity of serum compared to that of fish fed the control diet, even though it was not significant. Liver superoxide dismutase activity of fish fed the test diets was significantly higher than that of fish fed the control diet. The apparent digestibility coefficients of protein of fish fed all the diets were not significantly different. Phosphorus absorption was numerically increased in fish fed F-SBM and A. oryzae diets compared to that of fish fed the control diet. This study indicates that the fermentation process of soybean meal does not impair growth performance and feed utilization in parrot fish. The fermentation process could enhance the availability of phosphorus in soybean meal and non-specific immune responses of parrot fish.

The Origin of Meju Fungi - Fungal Diversity of Soybean, Rice Straw and Air for Meju Fermentation

  • Kim, Dae-Ho;Lee, Jong-kyu;Hong, Seung-Beom
    • 한국균학회소식:학술대회논문집
    • /
    • 2014.10a
    • /
    • pp.32-32
    • /
    • 2014
  • Meju is a brick of dried fermented soybeans and is the core material for Jang such as Doenjang and Ganjang. Jang is produced by addition of salty water to Meju and is considered the essential sauces of authentic Korean cuisine. Meju is fermented by diverse microorganisms such as bacteria, fungi and yeasts. It is known that fungi play an important role in the Meju fermentation and they degrade macromolecules of the soybeans into small nutrient molecules. In previous study, 26 genera and 0 species were reported as Meju fungi. However, it is not comprehensively examined where the fungi present on the Meju are originated. In order to elucidate the origin of the fungi present on the Meju, the mycobiota of 500 samples soybean kernels, 296 rice straw pieces and air samples of Jang factories was determined in 0, 2 and 7 Jang factories respectively. Forty-one genera covering 86 species were isolated from the soybeans and 33 species were identical with the species from Meju. From sodium hypochlorite untreated soybeans, Eurotium herbariorum, Eurotium repens, Cladosporium tenuissimum, Fusarium fujikuroi, Aspergillus oryzae/flavus and Penicillium steckii were the predominant species. In case of sodium hypochlorite-treated soybeans, Eurotium herbariorum, E. repens and Cladosporium tenuissimum were the predominant species. Of the 4 genera and 86 species isolated from soybeans, 3 genera and 33 species were also found in Meju. Thirty-nine genera and 92 species were isolated from the rice straws and 40 species were identical with the species from Meju. Fusarium asiaticum, Cladosporium cladosporioides, Aspergillus tubingensis, A. oryzae, E. repens and Eurotium chevalieri were frequently isolated from the rice straw obtained from many factories. Twelve genera and 40 species of fungi that were isolated in the rice straw in this study, were also isolated from Meju. Especially, A. oryzae, C. cladosporioides, E. chevalieri, E. repens, F. asiaticum and Penicillium polonicum that are abundant species in Meju, were also isolated frequently from rice straw. C. cladosporioides, F. asiaticum and P. polonicum that are abundant in low temperature fermentation process of Meju fermentation, were frequently isolated from rice straw incubated at $5^{\circ}C$ and $25^{\circ}C$, while A. oryzae, E. repens and E. chevalieri that are abundant in high temperature fermentation process of Meju fermentation, were frequently isolated from rice straw incubated at $25^{\circ}C$ and $35^{\circ}C$. This suggests that the mycobiota of rice straw have a large influence in mycobiota of Meju. Thirty-nine genera and 92 species were isolated from the air of Jang factories and 34 species were identical with the species from Meju. In outside air of the fermentation room, Cladosporium sp. and Cladosporium cladosporioides were the dominant species, followed by Cladosporium tenuissimum, Eurotium sp., Phoma sp. Sistotrema brinkmannii, Alternaria sp., Aspergillus fumigatus, Schizophyllum commune, and Penicillium glabrum. In inside air of the fermentation room, Cladosporium sp., Aspergillus oryzae, Penicillium chrysogenum, A. nidulans, Aspergillus sp., C. cladosporioides, Eurotium sp., Penicillium sp., C. tenuissimum, A. niger, E. herbariorum, A. sydowii, and E. repens were collected with high frequency. The concentrations of the genus Aspergillus, Eurotium and Penicillium were significantly higher in inside air than outside air. From this results, the origin of fungi present on Meju was inferred. Of the dominant fungal species present on Meju, Lichtheimia ramosa, Mucor circinelloides, Mucor racemosus, and Scopulariopsis brevicaulis are thought to be originated from outside air, because these species are not or are rarely isolated from rice straw and soybean; however, they were detected outside air of fermentation room and are species commonly found in indoor environments. However, A. oryzae, P. polonicum, E. repens, P. solitum, and E. chevalieri, which are frequently found on Meju, are common in rice straw and could be transferred from rice straw to Meju. The fungi grow and produce abundant spores during Meju fermentation, and after the spores accumulate in the air of fermentation room, they could influence mycobiota of Meju fermentation in the following year. This could explain why concentrations of the genus Aspergillus, Eurotium, and Penicillium are much higher inside than outside of the fermentation rooms.

  • PDF

Distribution and Characteristics of Penicillium spp. in Meju, aKorean Traditional Fermented Soybean Brick (전통 메주에서의 Penicillium spp.의 분포 및 특징)

  • Kang Uk Kim;Jungho Lee;Shin Young Roh;Yong-Ho Choi;Byung-Serk Hurh;Inhyung Lee
    • Microbiology and Biotechnology Letters
    • /
    • v.51 no.4
    • /
    • pp.441-448
    • /
    • 2023
  • Penicillium spp. are frequently found in meju, a Korean traditional fermented soybean brick. We isolated and identified 96 Penicillium spp. from 22 traditional meju, and their β-tubulin genes were sequenced for the genetic and taxonomic study. Penicillium Section Viridicata was the most commonly isolated group. Notably, we also isolated and identified Penicillium roqueforti, a crucial industrial strain employed in the fermentation of blue cheese. Additionally, certain strains exhibited relatively high protease and γ-glutamyl transpeptidase activities, suggesting that they might contribute to the development of kokumi flavor during meju fermentation. Interestingly, all eight Penicillium spp., including P. roqueforti, were found to possess both types of MAT1 genes. This intriguing finding suggests the feasibility of strain improvement through mating, thereby offering opportunities for industrial applications. Therefore, these studies pave the way for a deeper exploration of Penicillium's role in meju fermentation, potentially leading to the development of starters for producing plant-based cheese-flavored condiments.