• Title/Summary/Keyword: Medium vacuum

Search Result 173, Processing Time 0.029 seconds

Measurement of Hydroxyl Radical Density at Bio-Solutions Generated from the Atmospheric Pressure Non-Thermal Plasma Jet

  • Kim, Yong Hee;Hong, Young June;Uhm, Han Sub;Choi, Eun Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.494-494
    • /
    • 2013
  • Atmospheric pressure non-thermal plasma of the needle-typed interaction with aqueous solutions has received increasing attention for their biomedical applications [1]. In this context, surface discharges at bio-solutions were investigated experimentally. We have generated the non-thermal plasma jet bombarding the bio-solution surface by using an Ar gas flow and investigated the emission lines by OES (optical emission spectroscopy) [2]. Moreover, The non-thermal plasma interaction with bio-solutions has received increasing attention for their biomedical applications. So we researched, the OH radical density of various biological solutions in the surface by non-thermal plasma were investigated by Ar gases. The OH radical density of DI water; deionized water, DMEM Dulbecco's modified eagle medium, and PBS; 1x phosphate buffered saline by non-thermal plasma jet. It is noted that the OH radical density of DI water and DMEM are measured to be about $4.33{\times}1016cm-3$ and $2.18{\times}1016cm-3$, respectively, under Ar gas flow 250 sccm (standard cubic centimeter per minute) in this experiment. The OH radical density of buffer solution such as PBS has also been investigated and measured to be value of about $2.18{\times}1016cm-3$ by the ultraviolet optical absorption spectroscopy.

  • PDF

Morphology-Controlled Fabrication of ZnS Nanostructures with Enhanced UV Emission

  • Kim, Yeon-Ho;Jang, Du-Jeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.587-587
    • /
    • 2013
  • ZnS is well-known direct band gap II-VI semiconductor, and it attracts intense interest due to its excellent properties of luminescence which enable ZnS to have promising materials for optical, photonic and electronic devices. Especially, the emission wavelength of ZnS falls in the UV absorption band of most organic compoundsand biomolecules, thus it is envisaged that ZnS based devices may find applications in increasingly important fluorescence sensing. We have developed a facile and effective one-step process for the fabrication of single-crystalline and pure-wurtzite ZnS nanostructures possessing sharp band-edge emission at room-temperature having diverse length-to-width ratios. Each of nanostructures was composed of chemically pure, structurally uniform, single-crystalline, and defect-free ZnS. These features not only suppress trap or surface states emission centered at 420 nm, but also enhance UV band-edge emission centered at 327 nm, which give as-synthesized our ZnS nanostructures possible sharp UV emission at room temperature. The reaction medium consisting of mixed solvents such as hydrazine, ethylenediamine, and water as well as proper reaction time and temperature have played an important role in the crystallinity and optical properties of ZnS nanostructures. As-synthesized our ZnS nanostructures possessing sharp UV emission guarantee high potential for both fundamental research and technological applications.

  • PDF

MEIS를 이용한 Cu3Au(100)의 Surface Induced disorder 직접관찰

  • 오두환;강희재;채근화;김현경;문대원
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.179-179
    • /
    • 1999
  • Cu3AU(100) 단결정은 fcc 구조를 가지고 있으며 (100)면은 Cu와 Au가 1:1로 존재하고 가운데(200)면은 Cu만 존재한다. 따라서 Au 층은 (100)면에서만 존재하여 각 Au층은 서로 0.5nm 떨어져 있다. 이와 같은 Cu3Au(100) 단결정을 MEIS(Medium Energy Ion Scattering Spectroscopy) 실험 장비를 사용하여 0.35nm 떨어져 있는 Single unit cell의 윗면과 아래면, 즉 첫 층의 Au와 셋째층의 Au의 층분리를 통해서, 온도 변화에 따른 Cu3Au(100) 단결정의 표면 물리적 현상인 surface induced disorder을 밝혀내고자 한다. 우선 두 Au층의 분리 시도는 수소이온을 이용한 실험 조건에서는 extremely glancing exit angle 등 극한의 산란조거에서도 성공하지 못하였다. 깊이 분해능을 정해주는 electronic energy loss를 극대화하기 위해 수소이온이 아닌 질소 이온을 사용하여 energy spectra를 측정해 본 결과 아래 그림에서와 같이 표면 Au 층과 표면 셋째 Au층을 구분할 수 있었다. <110>으로 align된 조건에서는 셋째층의 Au 원자들이 완전히 shadow cone 내부에 존재하여 관측되지 않지만 9.75$^{\circ}$ tilt 한 경우 셋째층의 Au 원자들이 shadow cone 바깥으로 나오게 되어 그림에서와 같이 첫째 층과 셋째 층이 확실히 분리되어 측정되었다. 이를 바탕을 Cu3Au(100)의 온도변화에 다른 order disorder and segregation 현상을 측정하였다. ordered Cu3Au(100)은 28$0^{\circ}C$ 근처에서 surface층이 먼저 disordered상으로 바뀌는 surface induced disorder 현상이 일어나고 bulk transition 온도 39$0^{\circ}C$ 이하에서 R.T으로 온도를 낮추면 본래의 ordered 구조로 되돌아간다. 하지만 bulk transition 온도를 지나면 order-disorder transition이 비가역적이고 segregation 현상이 일어난다.

  • PDF

반도체 공정용 진공 펌프의 에너지 소비특성 분석

  • Sin, Jin-Hyeon;Gang, Sang-Baek;Go, Mun-Gyu;Jeong, Wan-Seop;Im, Jong-Yeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.334-334
    • /
    • 2010
  • 반도체 소자 제조 공정에 사용되는 공정 펌프는 전체 소요되는 에너지(소비전력)에 52%를 소비하고 있다. 이러한 이유 때문에 반도체 fab 내에서 에너지 절감을 논의할 때 항상 공정용 진공 펌프가 1 순위에 오를 수밖에 없는 것이다. 반도체 공정용 진공 펌프는 사용되어지는 공정에 따라 유지되는 진공도가 달라지고 이에 따라 소비전력과 투입되는 utility의 양이 바뀌게 되어 진공도와 공정에 따른 에너지 소비의 pattern이 다르다. 한국표준과학연구원 진공센터에서는 각 공정 대응용 펌프의 종류에 따라 배기속도, 도달진공도, 소비전력, 진동, 소음 등 기본 펌프 성능 평가, light gas인 helium에 대응하는 기본 성능평가를 실시하고 있다. 또한 부가적으로 soft/medium 공정용의 경우 저전력 mode의 소비전력의 진공도에 따르는 측정변수의 pattern을 측정/분석하고 있으며, harsh 공정용의 경우 50~300 slm의 유량 주입에 따른 내구성 특성을 monitoring하고 있다. 드라이펌프의 기본적인 평가 성능과 각 회사의 SPM (single pump monitoring system) 측정 변수인 온도, 배기구 압력 변화 등의 자체 진단 인자를 포함하여 반도체 공정에서 드라이 펌프의 운용에 필요한 냉각수, $N_2$, 등과 같은 utility의 사용량 및 온도변화 등을 측정하여 드라이 펌프의 에너지 소비 pattern을 분석하고자 한다.

  • PDF

Study of Laminating Strategy for FRP Hull Using Resin Infusion Simulation (진공적층 시뮬레이션을 이용한 FRP 선체 적층 전략 연구)

  • Jeong, Jin-Wook;Lee, Byung-Sung;Kang, Byung-Yoon;Han, Gab-Su;Suh, Sung-Bu
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.2
    • /
    • pp.98-103
    • /
    • 2009
  • The resin infusion method is the latest technology of FRP laminating and cleaning to improve FRP hull quality. This method is focused on how to arrange infusion channels for the laminiating strategy. The laminating strategy using the resin infusion method has been utilized to complete the infusion work and remove the cavities on the FRP surface within the curing time. It is resulting from the arrangement of infusion and vacuum channels, the resin property, and the combination of FRP. This strategy has been depended on the field experience for manufacturing FRP without the resin infusion simulation. This study can help to improve the efficiency of FRP fabrication with the laminating strategy including the resin infusion simulation instead of the field experience.

Surface structure modification of vertically-aligned carbon nanotubes and their characterization of field emission property

  • adil, Hawsawi;Jeong, Gu-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.159-159
    • /
    • 2016
  • Vertically-aligned carbon nanotubes (VCNT) have attracted much attention due to their unique structural, mechanical and electronic properties, and possess many advantages for a wide range of multifunctional applications such as field emission displays, heat dissipation and potential energy conversion devices. Surface modification of the VCNT plays a fundamental role to meet specific demands for the applications and control their surface property. Recent studies have been focused on the improvement of the electron emission property and the structural modification of CNTs to enable the mass fabrication, since the VCNT considered as an ideal candidate for various field emission applications such as lamps and flat panel display devices, X-ray tubes, vacuum gauges, and microwave amplifiers. Here, we investigate the effect of surface morphology of the VCNT by water vapor exposure and coating materials on field emission property. VCNT with various height were prepared by thermal chemical vapor deposition: short-length around $200{\mu}m$, medium-length around $500{\mu}m$, and long-length around 1 mm. The surface morphology is modified by water vapor exposure by adjusting exposure time and temperature with ranges from 2 to 10 min and from 60 to 120oC, respectively. Thin films of SiO2 and W are coated on the structure-modified VCNT to confirm the effect of coated materials on field emission properties. As a result, the surface morphology of VCNT dramatically changes with increasing temperature and exposure time. Especially, the shorter VCNT change their surface morphology most rapidly. The difference of field emission property depending on the coating materials is discussed from the point of work function and field concentration factor based on Fowler-Nordheim tunneling.

  • PDF

One step facile synthesis of Au nanoparticle-cyclized polyacrylonitrile composite films and their use in organic nano-floating gate memory applications

  • Jang, Seok-Jae;Jo, Se-Bin;Jo, Hae-Na;Lee, Sang-A;Bae, Su-Gang;Lee, Sang-Hyeon;Hwang, Jun-Yeon;Jo, Han-Ik;Wang, Geon-Uk;Kim, Tae-Uk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.307.2-307.2
    • /
    • 2016
  • In this study, we synthesized Au nanoparticles (AuNPs) in polyacrylonitrile (PAN) thin films using a simple annealing process in the solid phase. The synthetic conditions were systematically controlled and optimized by varying the concentration of the Au salt solution and the annealing temperature. X-ray photoelectron spectroscopy (XPS) confirmed their chemical state, and transmission electron microscopy (TEM) verified the successful synthesis, size, and density of AuNPs. Au nanoparticles were generated from the thermal decomposition of the Au salt and stabilized during the cyclization of the PAN matrix. For actual device applications, previous synthetic techniques have required the synthesis of AuNPs in a liquid phase and an additional process to form the thin film layer, such as spin-coating, dip-coating, Langmuir-Blodgett, or high vacuum deposition. In contrast, our one-step synthesis could produce gold nanoparticles from the Au salt contained in a solid matrix with an easy heat treatment. The PAN:AuNPs composite was used as the charge trap layer of an organic nano-floating gate memory (ONFGM). The memory devices exhibited a high on/off ratio (over $10^6$), large hysteresis windows (76.7 V), and a stable endurance performance (>3000 cycles), indicating that our stabilized PAN:AuNPs composite film is a potential charge trap medium for next generation organic nano-floating gate memory transistors.

  • PDF

ANALYSIS OF HEAT TRANSFER ON SPENT FUEL DRY CASK DURING SHORT-TERM OPERATIONS (사용후핵연료 건식 용기의 단기운영공정 열전달 평가)

  • Kim, H.;Lee, D.G.;Kang, G.U.;Cho, C.H.;Kwon, O.J.
    • Journal of computational fluids engineering
    • /
    • v.21 no.2
    • /
    • pp.54-61
    • /
    • 2016
  • When spent fuel assemblies from the reactor of nuclear power plants(NPPs) are transported, the assemblies are exposed to short-term operations that can affect the peak cladding temperature of spent fuel assemblies. Therefore, it needs to perform the analysis of heat transfer on spent fuel dry cask during the operation. For 3 dimensional computational fluid dynamnics(CFD) simulation, it is proposed that the short-term operation is divided into three processes: Wet, dry, and vacuum drying condition. The three processes have different heat transfer mode and medium. Metal transportation cask, which is Korea Radioactive Waste Agency(KORAD)'s developing cask, is evaluated by the methods proposed in this work. During working hours, the boiling at wet process does not occur in the cask and the peak cladding temperatures of all processes remain below $400^{\circ}C$. The maximum peak cladding temperature is $173.8^{\circ}C$ at vacuum drying process and the temperature rise of dry, and vacuum drying process occurs steeply.

New Method of Volume Measurement for Reference Weights of a Pressure Balance Using a Gas Pycnometer (기체용적계를 이용한 분동식 압력계용 기준분동의 새로운 부피측정 방법)

  • Lee, Yong Jae;Lee, Woo Gab;Mohammed, Mohammed Abdurahman;Park, Yon-Kyu;Oh, Chae Yoon
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.5
    • /
    • pp.231-237
    • /
    • 2013
  • New method of volume measurement for reference weights of a pressure balance using a gas pycnometer is proposed. The result of volume measurement of proposed method shows the uncertainties of approximately 0.2% at the level of confidence of 95% for reference weights in the ranges of 1 kg, 2 kg, and 5 kg. This measuring system consists of a sample chamber, an expansion chamber, a precision pressure gage, a precison thermometer, a vacuum pump, and helium as a medium gas. The measurement principle of this proposed method is based on Boyle's law. This method will contribute a reliability of the volume measurements of reference weights for a pressure balance to the national measurement standard.

Practical Study of Low-temperature Vacuum Swing Adsorption Process for VOCs Removal (휘발성 유기화합물 제거를 위한 저온 vacuum swing adsorption 공정의 실용화 연구)

  • Jeon, Mi-Jin;Pak, Seo-Hyun;Lee, Hyung-Don;Jeon, Yong-Woo
    • Applied Chemistry for Engineering
    • /
    • v.28 no.3
    • /
    • pp.332-338
    • /
    • 2017
  • The objective of this work was to study the low temperature vacuum adsorption technology applicable to small and medium scale painting plants, which is the main emission source of volatile organic compounds. The low-temperature vacuum swing adsorption (VSA) technology is the way that the adsorbates are removed by reducing pressure at low temperature ($60{\sim}90^{\circ}C$) to compensate disadvantages of the existing thermal swing adsorption (TSA) technology. Commercial activated carbon was used and the absorption and desorption characteristics of toluene, a representative VOCs, were tested on a lab scale. Also based on the lab scale experimental results, a $30m^3min^{-1}$ VSA system was designed and applied to the actual painting factory to assess the applicability of the VSA system in the field. As a result of lab scale experiments, a 2 mm pellet type activated carbon showed higher toluene adsorption capacity than that of using 4 mm pellet type, and was used in a practical scale VSA system. Optimum conditions for desorption experiments were $80{\sim}90^{\circ}C$ and 100 torr. In the practical scale system, the adsorption/desorption cycles were repeated 95 times. As a result, VOCs discharged from the painting factory can be effectively removed upto 98% or more even after repeated adsorption/desorption cycles when using VSA technology indicating potential field applicabilities.