• Title/Summary/Keyword: Medical ultrasound imaging

Search Result 290, Processing Time 0.022 seconds

Ultrasound-guided interventions for controlling the thoracic spine and chest wall pain: a narrative review

  • Park, Donghwi;Chang, Min Cheol
    • Journal of Yeungnam Medical Science
    • /
    • v.39 no.3
    • /
    • pp.190-199
    • /
    • 2022
  • Ultrasound-guided injection is useful for managing thoracic spine and chest wall pain. With ultrasound, pain physicians perform the injection with real-time viewing of major structures, such as the pleura, vasculature, and nerves. Therefore, the ultrasound-guided injection procedure not only prevents procedure-related adverse events but also increases the accuracy of the procedure. Here, ultrasound-guided interventions that could be applied for thoracic spine and chest wall pain were described. We presented ultrasound-guided thoracic facet joint and costotransverse joint injections and thoracic paravertebral, intercostal nerve, erector spinae plane, and pectoralis and serratus plane blocks. The indication, anatomy, Sonoanatomy, and technique for each procedure were also described. We believe that our article is helpful for clinicians to conduct ultrasound-guided injections for controlling thoracic spine and chest wall pain precisely and safely.

Improvements of Pulse Doppler Gap Filling Algorithms for Portable Medical Ultrasound Imaging System (휴대용 초음파진단기를 위한 펄스 도플러 갭 필링 알고리즘의 개선)

  • Bae, MooHo;An, Hyung-Jun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.8
    • /
    • pp.580-589
    • /
    • 2012
  • In this paper, we studied on Doppler gap-filling algorithms suitable for a portable or low-cost medical ultrasound imaging system, and as a result, found out algorithms based on mirroring or autoregressive model. Moreover, controlling the computational demand in the proper range, we improved the performances of these algorithms by solving their problems. Effectiveness of these modified algorithms is verified by computer simulations and experiments which used artificially generated Doppler signals and Doppler data acquired from human body through an actual ultrasound system.

A Synthetic Aperture Focusing Method for Three-way Dynamic Focusing

  • Kim Jung-Jun;Chang Jin-Ho;Song Tai-Kyong
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.1
    • /
    • pp.31-35
    • /
    • 2005
  • A novel synthetic aperture method for real-time three-way dynamic focusing is proposed, which provides lateral beam patterns represented as the product of Fourier transforms of transmit subaperture, receive subaperture, and a synthetic window function. In the proposed method, all array elements are fired individually and for each firing echo signals are recorded from all elements of a receive subaperture moving along an array with the transmit element. The three-way dynamic focusing is then achieved by employing a synthetic aperture algorithm for two-way dynamic focusing and a synthetic focusing method for transmit dynamic focusing. Both theoretical analysis and computer simulation results show that the proposed method produces ultrasound beams with improved lateral resolution at all depths compared to the conventional phased array imaging and synthetic aperture focusing methods.

Comparison of Mammography in Combination with Breast Ultrasonography Versus Mammography Alone for Breast Cancer Screening in Asymptomatic Women

  • Boonlikit, Sarawan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.12
    • /
    • pp.7731-7736
    • /
    • 2013
  • Aim: To compare the agreement of screening breast mammography plus ultrasound and reviewed mammography alone in asymptomatic women. Materials and Methods: All breast imaging data were obtained for women who presented for routine medical checkup at National Cancer Institute (NCI), Thailand from January 2010 to June 2013. A radiologist performed masked interpretations of selected mammographic images retrieved from the computer imaging database. Previous mammography, ultrasound reports and clinical data were blinded before film re-interpretation. Kappa values were calculated to assess the agreement between BIRADS assessment category and BIRADS classification of density obtained from the mammography with ultrasound in imaging database and reviewed mammography alone. Results: Regarding BIRADS assessment category, concordance between the two interpretations were good. Observed agreement was 96.1%. There was moderate agreement in which the Kappa value was 0.58% (95%CI; 0.45, 0.87). The agreement of BI-RADS classification of density was substantial, with a Kappa value of 0.60 (95%CI; 0.54, 0.66). Different results were obtained when a subgroup of patients aged ${\geq}60$ years were analyzed. In women in this group, observed agreement was 97.6%. There was also substantial agreement in which the Kappa value was 0.74% (95%CI; 0.49, 0.98). Conclusions: The present study revealed that concordance between mammography plus ultrasound and reviewed mammography alone in asymptomatic women is good. However, there is just moderate agreement which can be enhanced if age-targeted breast imaging is performed. Substantial agreement can be achieved in women aged ${\geq}60$. Adjunctive breast ultrasound is less important in women in this group.

A Study on the Improvement a Lateral Resolution of the Ultrasound Imaging System (초음파 영상장치에서 측방향 해상도 향상에 관한 연구)

  • 이후정;이행세
    • Journal of Biomedical Engineering Research
    • /
    • v.9 no.1
    • /
    • pp.87-92
    • /
    • 1988
  • In this paper, a new focusing method, to be called the pipelined sampled delay focusing (PSDF), is implemented. This method improves the lateral resolution in ultrasound imaging system. In PSDF, the analog belay lines are no longer necessary because sampling sum process can replace the conventional delay sum process. Also, the method offers continuous dynamic focusing on the resolution pixel basis, and eliminates the constraint that the maximum delay time is less than the sampling interval. Second order sampling is adopted in order to extend the sampling interval.

  • PDF

2D Sparse Array Transducer Optimization for 3D Ultrasound Imaging

  • Choi, Jae Hoon;Park, Kwan Kyu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.6
    • /
    • pp.441-446
    • /
    • 2014
  • A 3D ultrasound image is desired in many medical examinations. However, the implementation of a 2D array, which is needed for a 3D image, is challenging with respect to fabrication, interconnection and cabling. A 2D sparse array, which needs fewer elements than a dense array, is a realistic way to achieve 3D images. Because the number of ways the elements can be placed in an array is extremely large, a method for optimizing the array configuration is needed. Previous research placed the target point far from the transducer array, making it impossible to optimize the array in the operating range. In our study, we focused on optimizing a 2D sparse array transducer for 3D imaging by using a simulated annealing method. We compared the far-field optimization method with the near-field optimization method by analyzing a point-spread function (PSF). The resolution of the optimized sparse array is comparable to that of the dense array.

Development of Flexible Ultrasound System for Elastography (탄성 영상법 개발을 위한 유연성 높은 초음파 시스템의 구현)

  • Kim, D.I.;Lee, S.Y.;Cho, M.H.
    • Journal of Biomedical Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.32-38
    • /
    • 2012
  • Recently, several ultrasound imaging techniques for tissue characterization have been developed. Among them, ultrasound elastography is regarded as the most promising modality and has been rapidly developed. One of ultrasound elastography techniques is shear modulus imaging. Normal and cancerous tissues show big difference of shear moduli and they have good image contrast. However shear wave elastography requires more complicated hardware and more computations for image reconstruction algorithm. Therefore new efficient techniques are being developed. In this paper, we have developed a very flexible ultrasound system for elastography experiments. The developed system has capabilities to acquire ultrasound RF data of all channels and generate arbitrary ultrasound pulse sequences. It has a huge amount of memories for RF data acquisition and a simple and flexible pulse generator. We have verified the performance of the system showing conventional B-mode images and preliminary results of elastography. The developed system will be used to verify our own reconstruction algorithm and to develop more efficient elastography techniques.

Evolution of the synthetic aperture imaging method in medical ultrasound system (초음파진단기 합성구경영상법의 진화)

  • Bae, MooHo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.5
    • /
    • pp.534-544
    • /
    • 2022
  • Medical ultrasound system has been widely used to visualize the lesion for diagnostics in most medical service site including hospitals and clinics thanks to its advantages such as real time operation, ease of use, safety. Among many signal processing blocks of the system, one of the most important part that governs the image quality is the beamformer, and technologies for this part has been continuously developed in long time. The synthetic aperture imaging method, that is one of the major technologies of beamforming, was introduced to maximize utilizing the information delivered from the patient's body through the probe, and contributed to breakthrough of the image quality since it was introduced in around 1990's, and evolved continuously in decades. This paper reviews and surveys the process of development of this technology and expects future evolution.