• Title/Summary/Keyword: Medical technologist

Search Result 194, Processing Time 0.018 seconds

Nasal Continuous Positive Airway Pressure Titration and Time to Reach Optima1 Pressure in Sleep Apnea Syndrome (수면 무호흡 증후군에서 지속적 양압 치료시의 최적압 및 그 도달기간)

  • Lee, Kwan-Ho;Lee, Hyun-Woo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.42 no.1
    • /
    • pp.84-92
    • /
    • 1995
  • Background: Nasal applied continuous positive airway pressure(CPAP) is a highly effective method of treatment for obstructive sleep apnea syndrome. More than a decade of accumulated experience with this treatment modality confirmed that it is unquestionably the medical treatment of choice for patients with obstructive sleep apnea syndrome. However it takes long time to reach optimal CPAP pressure. To save the time to reach optimal pressure, it is necessary to clarify the time to reach optimal pressure for treatment of obstructive sleep apnea syndrome. Method: CPAP pressure is titrated during an overnight study according to a standardized protocol. Just before the presleep bio-calibration procedures, the technician applies the nasal mask and switches on the clinical CPAP unit. Initial positive for pressure is typically 3.0 centimeters of water pressure. After sleep onset, the technician gradually increases the pressure until sleep-disordered breathing events disappear or become minimal. The pressure must maintain maximal airway patency during both NREM and REM sleep to be considered effective. Before recommending a final pressure setting, sleep recording and oximetry data are reviewed by an American Board of Sleep Medicine certified Sleep Specialist and a Registrered Polysomnographic Technologist. Results: We examined the time required to reach optimal pressure during routine CPAP titration in 127 consecutively evaluated individuals diagnosed with sleep-disordered breathing. Results indicate that 33% of patients required more than four hours to attain satisfactory titration. This indicates that a four-hour session is marginally enough time, at best, to determine a proper CPAP pressure setting. Moreover, 60 of 127 patients required further adjustment after optimal pressure was reached. These additional pressure trials were needed to confirm that higher pressures were not superior for eliminating sleep-disordered breathing events. Conclusions: The data presented underscore the logistical difficulty of titrating CPAP during split-night studies without modifying the titration procedure. Futhermore, the time needed to reach optimal pressure makes it improbable that proper CPAP titration can be performed during a 2-3 hour nap study.

  • PDF

Survery on Business of the Departments of Radiology in Health Centers (보건소(保健所)의 방사선과(放射線科) 업무(業務)에 관한 조사연구(調査硏究))

  • Choi, Jong-Hak;Jeon, Man-Jin;Huh, Joon;Park, Sung-Ock
    • Journal of radiological science and technology
    • /
    • v.8 no.2
    • /
    • pp.21-28
    • /
    • 1985
  • We serveyed the actual condition of business of the departments of radiology of 45 health conters (except 3) in the area of Seoul, Kyungki and Inchon from March, 1984 to November, 1984. The results are summarized as follows : 1. T.O. of the radiologic technologist is three persons in each health center of Seoul area, and one person in each one of Kyungki and Inchon area. P.O. is 2-5 persons in Seoul area, 1-2 persons in Kyungki or Inchon area. 2. The number of all the radiologic technologists employed now is 75 persons, and among all of them, when analized by position class 7th is 54.7%, class 8th 28.0%, class 9th is 13.3%, and class 6th is 2.7%, and by sex, female is 68.0%, male is 32.0%, by educational background, for the most part, junior college graduates come to 73.3%, by age group 60% of them is in their twenties, 16.0% is in their thirties and forties, 8.0% is in their fifties, and by career after certificate 60% have the career of 1-5 years, 13.3% have the one of 6-7 years or mor than 21 years, and 6.7% have the one of 11-15 years of 16-20 years. 3. All the diagnostic x-ray equipment being kept is 62, and among them flxing equipment is 71.0%, portable equipment is 29.0% and by rating of X-ray equipment, maximum tube current 100 mA is 46.8%, maximum KV 100KVP is 72.6%, the most part. 4. Photofluorographic camera and hood are equipped in every health center. While, as to the radiographic cassettes, $14{\times}14"$ cassetts are equipped in every health center, but cassettes of other sizes are in half of them. 5. Bucky's table is equipped in 11.9% health centers, the automatic processor is in 21.4%, the photofluorographic film changer is 9.5%, the grid is 73.8%, the protective apron is in 88.1%, and the protective glove is in 57.1% health centers. 6. The number of the people who got the x-ray examination for one year (by the year 1989) is the most, 1,000-6,000 in direct radiography of the chest, or 15,0001-45,000 in the health centers of Seoul area, 5,000-20,000 in Kyungki and Inchon area in photofluorography of the chest. Moreover, other radiographies are being taken extremely limitedly in all health centers. 7. In processing types of x-ray film, automatic processing is used in 9 health centers (21.4%), manual tank processing is in 30 (71.4%), and manual tray processing in 3 (7.2%). 8. As for collimation of x-ray exposure field, "continual using restricted by a subject size" has the most part, 78.6% "restricted using at every radiography" has 19%, and the case of "never considered" has 2.4% response. 9. As for the dosimeter used for radiation control, film badge (35.7%) and pocket dosimeter (26.2%) are used, and in 38.1% health centers the dosimeter is not equipped at all. Consideration of the previous radiation exposure is being done in only one health center. 10. Reading of radiographs is mainly depended on the radiologists electively (45.2%) or on the genral practitioners(45.2%).

  • PDF

Comparison of Noise Power Spectrum Methodologies in Measurements by Using Various Electronic Portal Imaging Devices in Radiation Therapy (방사선치료시 전자포털영상장치를 이용한 잡음전력스펙트럼 방법론 측정비교)

  • Son, Soon-Yong;Choi, Kwan-Woo;Jeong, Hoi-Woun;Kwon, Kyung-Tae;Kim, Ki-Won;Lee, Young-Ah;Son, Jin-Hyun;Min, Jung-Whan
    • Journal of radiological science and technology
    • /
    • v.39 no.1
    • /
    • pp.99-105
    • /
    • 2016
  • The noise power spectrum (NPS) is one of the most general methods for measuring the noise amplitude and the quality of an image acquired from a uniform radiation field. The purpose of this study was to compare different NPS methodologies by using megavoltage X-ray energies. The NPS evaluation methods in diagnostic radiation were applied to therapy using the International Electro-technical Commission standard (IEC 62220-1). Various radiation therapy (RT) devices such as TrueBeam$^{TM}$(Varian), BEAMVIEW$^{PLUS}$(Siemens), iViewGT(Elekta) and Clinac$^R$ iX (Varian) were used. In order to measure the region of interest (ROI) of the NPS, we used the following four factors: the overlapping impact, the non-overlapping impact, the flatness and penumbra. As for NPS results, iViewGT(Elekta) had the higher amplitude of noise, compared to BEAMVIEW$^{PLUS}$ (Siemens), TrueBeam$^{TM}$(Varian) flattening filter, Clinac$^{R}$iXaS1000(Varian) and TrueBeam$^{TM}$(Varian) flattening filter free. The present study revealed that various factors could be employed to produce megavoltage imaging (MVI) of the NPS and as a baseline standard for NPS methodologies control in MVI.

A Study of Decrease Exposure Dose for the Radiotechnologist in PET/CT (PET-CT 검사에서 방사선 종사자 피폭선량 저감에 대한 방안 연구)

  • Kim, Bit-Na;Cho, Suk Won;Lee, Juyoung;Lyu, Kwang Yeul;Park, Hoon-Hee
    • Journal of radiological science and technology
    • /
    • v.38 no.1
    • /
    • pp.23-30
    • /
    • 2015
  • Positron emission tomography scan has been growing diagnostic equipment in the development of medical imaging system. Compare to 99mTc emitting 140 keV, Positron emission radionuclide emits 511 keV gamma rays. Because of this high energy, it needs to reduce radioactive emitting from patients for radio technologist. We searched the external dose rates by changing distance from patients and measure the external dose rates when we used shielder investigate change external dose rates. In this study, the external dose distribution were analyzed in order to help managing radiation protection of radio technologists. Ten patients were searched (mean age: $47.7{\pm}6.6$, mean height: $165.5{\pm}3.8cm$, mean weight: $65.9{\pm}1.4kg$). Radiation was measured on the location of head, chest, abdomen, knees and toes at the distance of 10, 50, 100, 150, and 200 cm, respectively. Then, all the procedure was given with a portable radiation shielding on the location of head, chest, and abdomen at the distance of 100, 150, and 200 cm and transmittance was calculated. In 10 cm, head ($105.40{\mu}Sv/h$) was the highest and foot($15.85{\mu}Sv/h$) was the lowest. In 200 cm, head, chest, and abdomen showed similar. On head, the measured dose rates were $9.56{\mu}Sv/h$, $5.23{\mu}Sv/h$, and $3.40{\mu}Sv/h$ in 100, 150, and 200 cm, respectively. When using shielder, it shows $2.24{\mu}Sv/h$, $1.67{\mu}Sv/h$, and $1.27{\mu}Sv/h$ in 100, 150, and 200 cm on head. On chest, the measured dose rates were $8.54{\mu}Sv/h$, $4.90{\mu}Sv/h$, $3.44{\mu}Sv/h$ in 100, 150, and 200 cm, respectively. When using shielder, it shows $2.27{\mu}Sv/h$, $1.34{\mu}Sv/h$, and $1.13{\mu}Sv/h$ in 100, 150, and 200 cm on chest. On abdomen, the measured dose rates were $9.83{\mu}Sv/h$, $5.15{\mu}Sv/h$, and $3.18{\mu}Sv/h$ in 100, 150, and 200 cm, respectively. When using shielder, it shows $2.60{\mu}Sv/h$, $1.75{\mu}Sv/h$, and $1.23{\mu}Sv/h$ in 100, 150, and 200 cm on abdomen. Transmittance was increased as the distance was expanded. As the distance was further, the radiation dose were reduced. When using shielder, the dose were reduced as one-forth of without shielder. The Radio technologists are exposed of radioactivity and there were limitations on reducing the distance with Therefore, the proper shielding will be able to decrease radiation dose to the technologists.