• Title/Summary/Keyword: Medical model

Search Result 5,723, Processing Time 0.034 seconds

Three-Dimensional Active Shape Models for Medical Image Segmentation (의료영상 분할을 위한 3차원 능동 모양 모델)

  • Lim, Seong-Jae;Jeong, Yong-Yeon;Ho, Yo-Sung
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.5
    • /
    • pp.55-61
    • /
    • 2007
  • In this paper, we propose a three-dimensional(3D) active shape models for medical image segmentation. In order to build a 3D shape model, we need to generate a point distribution model(PDM) and select corresponding landmarks in all the training shapes. The manual determination method, two-dimensional(2D) method, and limited 3D method of landmark correspondences are time-consuming, tedious, and error-prone. In this paper, we generate a 3D statistical shape model using the 3D model generation method of a distance transform and a tetrahedron method for landmarking. After generating the 3D model, we extend the shape model training and gray-level model training of 2D active shape models(ASMs) and we use the integrated modeling process with scale and gray-level models for the appearance profile to represent the local structure. Experimental results are comparable to those of region-based, contour-based methods, and 2D ASMs.

Applying Conventional and Saturated Generalized Gamma Distributions in Parametric Survival Analysis of Breast Cancer

  • Yavari, Parvin;Abadi, Alireza;Amanpour, Farzaneh;Bajdik, Chris
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.5
    • /
    • pp.1829-1831
    • /
    • 2012
  • Background: The generalized gamma distribution statistics constitute an extensive family that contains nearly all of the most commonly used distributions including the exponential, Weibull and log normal. A saturated version of the model allows covariates having effects through all the parameters of survival time distribution. Accelerated failure-time models assume that only one parameter of the distribution depends on the covariates. Methods: We fitted both the conventional GG model and the saturated form for each of its members including the Weibull and lognormal distribution; and compared them using likelihood ratios. To compare the selected parameter distribution with log logistic distribution which is a famous distribution in survival analysis that is not included in generalized gamma family, we used the Akaike information criterion (AIC; r=l(b)-2p). All models were fitted using data for 369 women age 50 years or more, diagnosed with stage IV breast cancer in BC during 1990-1999 and followed to 2010. Results: In both conventional and saturated parametric models, the lognormal was the best candidate among the GG family members; also, the lognormal fitted better than log-logistic distribution. By the conventional GG model, the variables "surgery", "radiotherapy", "hormone therapy", "erposneg" and interaction between "hormone therapy" and "erposneg" are significant. In the AFT model, we estimated the relative time for these variables. By the saturated GG model, similar significant variables are selected. Estimating the relative times in different percentiles of extended model illustrate the pattern in which the relative survival time change during the time. Conclusions: The advantage of using the generalized gamma distribution is that it facilitates estimating a model with improved fit over the standard Weibull or lognormal distributions. Alternatively, the generalized F family of distributions might be considered, of which the generalized gamma distribution is a member and also includes the commonly used log-logistic distribution.

A Study on the Improvement of Accuracy of Cardiomegaly Classification Based on InceptionV3 (InceptionV3 기반의 심장비대증 분류 정확도 향상 연구)

  • Jeong, Woo Yeon;Kim, Jung Hun
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.45-51
    • /
    • 2022
  • The purpose of this study is to improve the classification accuracy compared to the existing InceptionV3 model by proposing a new model modified with the fully connected hierarchical structure of InceptionV3, which showed excellent performance in medical image classification. The data used for model training were trained after data augmentation on a total of 1026 chest X-ray images of patients diagnosed with normal heart and Cardiomegaly at Kyungpook National University Hospital. As a result of the experiment, the learning classification accuracy and loss of the InceptionV3 model were 99.57% and 1.42, and the accuracy and loss of the proposed model were 99.81% and 0.92. As a result of the classification performance evaluation for precision, recall, and F1 score of Inception V3, the precision of the normal heart was 78%, the recall rate was 100%, and the F1 score was 88. The classification accuracy for Cardiomegaly was 100%, the recall rate was 78%, and the F1 score was 88. On the other hand, in the case of the proposed model, the accuracy for a normal heart was 100%, the recall rate was 92%, and the F1 score was 96. The classification accuracy for Cardiomegaly was 95%, the recall rate was 100%, and the F1 score was 97. If the chest X-ray image for normal heart and Cardiomegaly can be classified using the model proposed based on the study results, better classification will be possible and the reliability of classification performance will gradually increase.

A Development of Nurse Scheduling Model Based on Q-Learning Algorithm

  • JUNG, In-Chul;KIM, Yeun-Su;IM, Sae-Ran;IHM, Chun-Hwa
    • Korean Journal of Artificial Intelligence
    • /
    • v.9 no.1
    • /
    • pp.1-7
    • /
    • 2021
  • In this paper, We focused the issue of creating a socially problematic nurse schedule. The nurse schedule should be prepared in consideration of three shifts, appropriate placement of experienced workers, the fairness of work assignment, and legal work standards. Because of the complex structure of the nurse schedule, which must reflect various requirements, in most hospitals, the nurse in charge writes it by hand with a lot of time and effort. This study attempted to automatically create an optimized nurse schedule based on legal labor standards and fairness. We developed an I/O Q-Learning algorithm-based model based on Python and Web Application for automatic nurse schedule. The model was trained to converge to 100 by creating an Fairness Indicator Score(FIS) that considers Labor Standards Act, Work equity, Work preference. Manual nurse schedules and this model are compared with FIS. This model showed a higher work equity index of 13.31 points, work preference index of 1.52 points, and FIS of 16.38 points. This study was able to automatically generate nurse schedule based on reinforcement Learning. In addition, as a result of creating the nurse schedule of E hospital using this model, it was possible to reduce the time required from 88 hours to 3 hours. If additional supplementation of FIS and reinforcement Learning techniques such as DQN, CNN, Monte Carlo Simulation and AlphaZero additionally utilize a more an optimized model can be developed.

Impacts of Emergency Medical Technicians' Personal Traits on Job Related Outcome Variables (응급구조사의 성격유형이 직무관련 산출변수에 미치는 영향)

  • Park, Jae-Sung;Kim, Mi-Sook
    • The Korean Journal of Health Service Management
    • /
    • v.6 no.3
    • /
    • pp.1-11
    • /
    • 2012
  • The purpose of this study is to identify the effects of emergency medical technicians' personal traits and job characteristics on job/social stress, job satisfaction, role conflicts, organizational commitment, and self-efficacy. The study population was emergency medical technicians who is working at the hospitals in Yeungnam province. The 200 questionnaires were administered by using ground mail, e-mail, and personal visits and 156 questionnaires were returned(82.5% response rate). Social stress, job satisfaction and role conflicts were significantly determined by personal traits and job characteristic variables. However, job stress, organizational commitment and self-efficacy was only significantly determined by job characteristic variables. In social stress and role conflicts, the subjects with challenge, sociability, acceptance and prudence traits were tend to be significantly higher scores compared to the stability traits. Additionally, among social stress regression models, adding job characteristics to the personal traits model, $R^2$ was increased up to 19% and adding personal traits to the job characteristics model, $R^2$ was increased up to 14%. In conclusion, the study found that personal traits and job characteristics are important variables in explaining social stress, job satisfaction and role conflicts, that would have important managerial implications for recruiting, hiring and managing either new or current emergency medical technicians efficiently.

Effect of Private Health Insurance on Medical Care Utilization: Six Year Unbalanced Panel Data Model (민간의료보험 가입 유형별 의료 이용: 6개년 불균형패널 분석)

  • You, Chang-Hoon;Kang, Sung-Wook;Choi, Ji-Heon;Kwon, Young-Dae
    • The Korean Journal of Health Service Management
    • /
    • v.11 no.3
    • /
    • pp.51-64
    • /
    • 2017
  • Objectives : This study examined the effect of private health insurance on medical care utilization by subscription type. Methods : The data used were the six waves of the Korea Health Panel (2009-2014), and 16,187 persons were the subjects of the analysis. We performed a panel regression with a fixed effects model. Results : Indemnity private health insurance was positively related to the number of physician visits, number of admissions, and total length of stays. However, fixed-benefit private health insurance was not related to medical care utilization. Conclusions : The result of this study, which shows the difference by subscription type in the effect of private health insurance on medical care utilization, suggests that continuous monitoring of indemnity private health insurance is needed in the future.

Essential technical and intellectual abilities for autonomous mobile service medical robots

  • Rogatkin, Dmitry A.;Velikanov, Evgeniy V.
    • Advances in robotics research
    • /
    • v.2 no.1
    • /
    • pp.59-68
    • /
    • 2018
  • Autonomous mobile service medical robots (AMSMRs) are one of the promising developments in contemporary medical robotics. In this study, we consider the essential technical and intellectual abilities needed by AMSMRs. Based on expert analysis of the behavior exhibited by AMSMRs in clinics under basic scenarios, these robots can be classified as intellectual dynamic systems acting according to a situation in a multi-object and multi-agent environment. An AMSMR should identify different objects that define the presented territory (rooms and paths), different objects between and inside rooms (doors, tables, and beds, among others), and other robots. They should also identify the means for interacting with these objects, people and their speech, different information for communication, and small objects for transportation. These are included in the minimum set required to form the internal world model in an AMSMR. Recognizing door handles and opening doors are some of the most difficult problems for contemporary AMSMRs. The ability to recognize the meaning of human speech and actions and to assist them effectively are other problems that need solutions. These unresolved issues indicate that AMSMRs will need to pass through some learning and training programs before starting real work in hospitals.

The Future of Flexible Learning and Emerging Technology in Medical Education: Reflections from the COVID-19 Pandemic (포스트 코로나 시대 플렉서블 러닝과 첨단기술 활용 중심의 의학교육 전망과 발전)

  • Park, Jennifer Jihae
    • Korean Medical Education Review
    • /
    • v.23 no.3
    • /
    • pp.147-153
    • /
    • 2021
  • The coronavirus disease 2019 (COVID-19) pandemic made it necessary for medical schools to restructure their curriculum by switching from face-to-face instruction to various forms of flexible learning. Flexible learning is a student-centered approach to learning that has received interest in many educational sectors. It is a critical strategy for expanding access to higher education during the pandemic. As flexible learning includes online, blended, hybrid, and hyflex learning options, learners have the opportunity to select an instruction modality based on their needs and interests. The shift to flexible learning in medical education took place rapidly in response to the COVID-19 pandemic, and learners, instructors, and schools were not prepared for this instructional change. Through the lens of the technology acceptance model, human agency, and a social constructivist perspective, I examine students, instructors, and educational institutions' roles in successfully navigating the digital transformation era. The pandemic has also accelerated the use of advanced information and communication technologies, such as artificial intelligence and virtual reality, in learning. Through a review of the literature, this paper aimed to reflect on current flexible learning practices from the instructional design and educational technology perspective and explore emerging technologies that may be implemented in future medical education.

Medical Data Base Controlled By Medical Knowledge Base

  • Chernyakhovskaya, Mery Y.;Gribova, Valeriya V.;Kleshchev, Alexander S.
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2001.01a
    • /
    • pp.343-351
    • /
    • 2001
  • World practice is evidence of that computer systems of an intellectual support of medical activities bound up with examination of patients, their diagnosis, therapy and so on are the most effective means for attainment of a high level of physician\`s qualification. Such systems must contain large knowledge bases consistent with the modern level of science and practice. To from large knowledge bases for such systems it is necessary to have a medical ontology model reflecting contemporary notions of medicine. This paper presents a description of an observation ontology, knowledge base for the physician of general tipe, architecture, functions and implementation of problem independent shell of the system for intellectual supporting patient examination and mathematical model of the dialog. The system can be used by the following specialist: therapeutist, surgeon, gynecologist, urologist, otolaryngologist, ophthalmologist, endocrinologist, neuropathologist and immunologist. The system supports a high level of examination of patients, delivers doctors from routine work upon filling in case records and also automatically forms a computer archives of case records. The archives can be used for any statistical data processing, for producing accounts and also for debugging of knowledge bases of expert systems. Besides that, the system can be used for rise of medical education level of students, doctors in internship, staff physicians and postgraduate students.

  • PDF

Development of Medical Cost Prediction Model Based on the Machine Learning Algorithm (머신러닝 알고리즘 기반의 의료비 예측 모델 개발)

  • Han Bi KIM;Dong Hoon HAN
    • Journal of Korea Artificial Intelligence Association
    • /
    • v.1 no.1
    • /
    • pp.11-16
    • /
    • 2023
  • Accurate hospital case modeling and prediction are crucial for efficient healthcare. In this study, we demonstrate the implementation of regression analysis methods in machine learning systems utilizing mathematical statics and machine learning techniques. The developed machine learning model includes Bayesian linear, artificial neural network, decision tree, decision forest, and linear regression analysis models. Through the application of these algorithms, corresponding regression models were constructed and analyzed. The results suggest the potential of leveraging machine learning systems for medical research. The experiment aimed to create an Azure Machine Learning Studio tool for the speedy evaluation of multiple regression models. The tool faciliates the comparision of 5 types of regression models in a unified experiment and presents assessment results with performance metrics. Evaluation of regression machine learning models highlighted the advantages of boosted decision tree regression, and decision forest regression in hospital case prediction. These findings could lay the groundwork for the deliberate development of new directions in medical data processing and decision making. Furthermore, potential avenues for future research may include exploring methods such as clustering, classification, and anomaly detection in healthcare systems.