• Title/Summary/Keyword: Medical image transmission

Search Result 126, Processing Time 0.046 seconds

A Study on the Development Direction of Medical Image Information System Using Big Data and AI (빅데이터와 AI를 활용한 의료영상 정보 시스템 발전 방향에 대한 연구)

  • Yoo, Se Jong;Han, Seong Soo;Jeon, Mi-Hyang;Han, Man Seok
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.9
    • /
    • pp.317-322
    • /
    • 2022
  • The rapid development of information technology is also bringing about many changes in the medical environment. In particular, it is leading the rapid change of medical image information systems using big data and artificial intelligence (AI). The prescription delivery system (OCS), which consists of an electronic medical record (EMR) and a medical image storage and transmission system (PACS), has rapidly changed the medical environment from analog to digital. When combined with multiple solutions, PACS represents a new direction for advancement in security, interoperability, efficiency and automation. Among them, the combination with artificial intelligence (AI) using big data that can improve the quality of images is actively progressing. In particular, AI PACS, a system that can assist in reading medical images using deep learning technology, was developed in cooperation with universities and industries and is being used in hospitals. As such, in line with the rapid changes in the medical image information system in the medical environment, structural changes in the medical market and changes in medical policies to cope with them are also necessary. On the other hand, medical image information is based on a digital medical image transmission device (DICOM) format method, and is divided into a tomographic volume image, a volume image, and a cross-sectional image, a two-dimensional image, according to a generation method. In addition, recently, many medical institutions are rushing to introduce the next-generation integrated medical information system by promoting smart hospital services. The next-generation integrated medical information system is built as a solution that integrates EMR, electronic consent, big data, AI, precision medicine, and interworking with external institutions. It aims to realize research. Korea's medical image information system is at a world-class level thanks to advanced IT technology and government policies. In particular, the PACS solution is the only field exporting medical information technology to the world. In this study, along with the analysis of the medical image information system using big data, the current trend was grasped based on the historical background of the introduction of the medical image information system in Korea, and the future development direction was predicted. In the future, based on DICOM big data accumulated over 20 years, we plan to conduct research that can increase the image read rate by using AI and deep learning algorithms.

Down-Scaled 3D Object for Telediagnostic Imaging Support System

  • Shin, Hang-Sik;Yoon, Sung-Won;Kim, Jae-Young;Lee, Myoung-Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.4
    • /
    • pp.185-191
    • /
    • 2005
  • In this paper, we proposed a downscaled 3D object technique using medical images for telediagnostic use. The proposed system consisted of downscaling/thresholding processes for building a downscaled 3D object and a process for obtaining 2D images at specific angles for diagnosis support. We used 80 slices of Digital Imaging and Communication in Medicine(DICOM) CT images as sample images and the platform-independent Java language for the experiment. We confirmed that the total image set size and transmission time of the original DICOM image set using a down-scaled 3D object decreased approximately $99\%\;and\;98.41\%,$ respectively. With additional studies, the proposed technique obtained from these results will become useful in supporting diagnosis for home and hospital care.

The Study on the Medical Image Compression using the Characteristics of Human Visual System (인간 시각 장치의 특성을 이용한 의학 영상 압축에 관한 연구)

  • Chee, Young-Joon;Park, Kwang-Seok
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1993 no.05
    • /
    • pp.38-41
    • /
    • 1993
  • For efficient transmission and storage of digital images, the requirements of image compression is incresing. Because the medical images contain diagnostic information small distortion has been more important factor than the low rate in such images. Generally the distortion in image is the difference of pixel values. However the image is percieved by human visual systems. So it is reasonable that human visual system characteristics be used as criteria of the image compression. In this paper, the Just Noticeable Difference curve is used as criteria of determining the homogeniety of a block and acceptibility of distortions. And Block Truncation Coding using spatial masking effect of eyes is adopted to code the blocks which contain line components. And small blocks which varies slowly can be approximated to polynomial functions successfully. We proposed the hybrid block coding scheme based on the block characteristics and human visual system characteristics. Simulation to several kinds of the medical images using this method showed that medical images can be compressed 5:1 - 10:1 without noticeable distortion.

  • PDF

Digital Watermarking Scheme Adopting Variable Spreading Sequence in Wireless Image Transmission (무선 이미지 전송에서 가변확산부호를 적용한 Digital Watermarking 기법)

  • 조복은;노재성;조성준
    • Proceedings of the IEEK Conference
    • /
    • 2002.06d
    • /
    • pp.109-112
    • /
    • 2002
  • In this paper, we propose the efficient digital watermarking scheme to transmit effectively the compressed medical image that embedded with watermarking data in mobile Internet access channel. The wireless channel error based on multiple access interference (MAI) is closely related to the length of spreading sequence in CDMA system. Also, the fixed length coded medical image with watermark bit stream can be classified by significance of source image. In the simulation, we compare the peak signal to noise ratio (PSNR) performance when the watermarked image with a simple symbol and when the watermarked image with a text file is transmitted using variable length of spreading sequences in case of limited length of spread sequence.

  • PDF

Design of Quantization Tables and Huffman Tables for JPEG Compression of Medical Images (의료영상의 JPEG 압축을 위한 양자화 테이블과 허프만 테이블 설계)

  • 양시령;정제창;박상규
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.6
    • /
    • pp.453-456
    • /
    • 2004
  • Due to the bandwidth and storage limitations medical images are needed to be compressed before transmission and storage. DICOM (Digital Imaging and Communications in Medicine) specification, which is the medical images standard, provides a mechanism for supporting the use of JPEG still image compression standard. In this paper, we explain a method for compressing medical images by PEG standard and propose two methods for JPEG compression. First, because medical images differ from natural images in optical feature, we propose a method to design adaptively the quantization table using spectrum analysis. Second, because medical images have higher pixel depth than natural images do, we propose a method to design Huffman table which considers the probability distribution feature of symbols. Simulation results show the improved performance compared to the quantization table and the adjusted Huffman table of JPEG standard.

Control of mobile robot system with wireless transmission of image information.

  • Jeong, Sang-Hoon;Kwak, Jae-Hyuk;Lim, Joon-Hong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.908-911
    • /
    • 2004
  • There are various researches on mobile robot systems. Connection method between server and client of mobile robot system is one of them. In the case of mobile robot system, when connection method between server and client is wireless than wire, applications may be expanded. Also in remote monitoring environment using mobile robot system, we are interested in an effective transmission of the image information between server and client. In this paper, Bluetooth is used for connection method between server and client. One of the major applications of Bluetooth is the cable replacement for mobile and peripheral devices. Using Bluetooth, we propose the control method of mobile robot system. Bluetooth offers fast and reliable transmissions of both voice and data over the globally available 2.4GHz ISM (Industrial, Scientific and Medical) band. It has the advantage of small size, low power and low cost. It has the disadvantage of limited range and limited bandwidth. Also in order to transfer effectively image information between remote site(server) and mobile robot system(client) using Bluetooth, we applied to MPEG-2 and MPEG-4 image compression techniques and the results are compared with each other.

  • PDF

A Study on the Design of Telemedicine System Using Image Division Communication (영상분할 통신을 이용한 원격진료시스템의 설계에 관한 연구)

  • Joung, Ki-Bong;Oh, Moo-Song
    • The KIPS Transactions:PartB
    • /
    • v.9B no.3
    • /
    • pp.287-292
    • /
    • 2002
  • In general cases, the conventional internet connected to a terrestrial network is transmit too large medical images. To overcome this low speed transmitting rate problem of the interned, we have studied about an image division communication system as a fast telemedicine system. The image division communication system was 5-10 times faster than the conventional terrestrial internet link. Also we have developed a Web-based telemedicine system that can access every permitted server of hospitals via the internet. Studied image division communication corrected problem of other reflex quality decline in erratic transmission of reflex by transmission speed imbalance that is problem of single communication techniques that used in existing reflex transmission. Also, could keep quality state of fixed reflex gouge abnormal transmission speed. Visual Basic and C++, ASP programming techniques were used to make our system and it can access and retrieve medical information and image through only public web browse such as internet explorer without additional specific tools. To increase the transmitting speed of our telemedicine system, JPEG method was used. In conclusion, we were able to develop a fast and public telemedicine system using the proposed image division communication system and Web technology. Image division communication system technology increased the speed of the conventional internet and Web technology extended the scope of use for telemedicine system from intrahospital to public use.

Design and Performance Evaluation of the Secure Transmission Module for Three-dimensional Medical Image System based on Web PACS (3차원 의료영상시스템을 위한 웹 PACS 기반 보안전송모듈의 설계 및 성능평가)

  • Kim, Jungchae;Yoo, Sun Kook
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.3
    • /
    • pp.179-186
    • /
    • 2013
  • PACS is a medical system for digital medical images, and PACS expand to web-based service using public network, DICOM files should be protected from the man-in-the-middle attack because they have personal medical record. To solve the problem, we designed flexible secure transmission system using IPSec and adopted to a web-based three-dimensional medical image system. And next, we performed the performance evaluation changing integrity and encryption algorithm using DICOM volume dataset. At that time, combinations of the algorithm was 'DES-MD5', 'DES-SHA1', '3DES-MD5', and '3DES-SHA1, and the experiment was performed on our test-bed. In experimental result, the overall performance was affected by encryption algorithms than integrity algorithms, DES was approximately 50% of throughput degradation and 3DES was about to 65% of throughput degradation. Also when DICOM volume dataset was transmitted using secure transmission system, the network performance degradation had shown because of increased packet overhead. As a result, server and network performance degradation occurs for secure transmission system by ensuring the secure exchange of messages. Thus, if the secure transmission system adopted to the medical images that should be protected, it could solve server performance gradation and compose secure web PACS.

PDA Transmission of Medical Images by CDMA (CDMA에 의한 의료영상의 PDA전송)

  • Lee, Myong-Ho;Lim, Jae-Dong;Ahn, Bung-Ju;Lee, Hwun-Jae;Lee, Sang-Bock
    • Journal of the Korean Society of Radiology
    • /
    • v.1 no.2
    • /
    • pp.13-22
    • /
    • 2007
  • The purpose of this study was to survey a development of the wireless transmission system of medical images for ubiquitous medicine. There have been many changes in medical equipments and medical record medical treatment and medical record within hospital and PACS(Picture Archiving Communication System) which is picture management system for patients can be typical cases. It is difficult to use these automated medical systems unless they are within hospital and in case of rapid image reading in the emergency cases or in absence of doctor, it is difficult to perform it immediately. The present study implemented an image transmission system using CDMA connection so that images in the server can be viewed at any time and in any place. Remote wireless diagnosis based on medical images using PDA is applicable to medical areas that require mobility, and the use of PDA can be an ideal alternative for point of care. The use of PDA enables prompt and accurate access to digital medical images, which in turn reduces medical accidents and improves the quality of medical services through high productivity and efficiency of medical practitioners' works. It also enables quick response to patients' demands and high-quality medical services and, consequently, patients' high satisfaction.

  • PDF

Penalized-Likelihood Image Reconstruction for Transmission Tomography Using Spline Regularizers (스플라인 정칙자를 사용한 투과 단층촬영을 위한 벌점우도 영상재구성)

  • Jung, J.E.;Lee, S.-J.
    • Journal of Biomedical Engineering Research
    • /
    • v.36 no.5
    • /
    • pp.211-220
    • /
    • 2015
  • Recently, model-based iterative reconstruction (MBIR) has played an important role in transmission tomography by significantly improving the quality of reconstructed images for low-dose scans. MBIR is based on the penalized-likelihood (PL) approach, where the penalty term (also known as the regularizer) stabilizes the unstable likelihood term, thereby suppressing the noise. In this work we further improve MBIR by using a more expressive regularizer which can restore the underlying image more accurately. Here we used a spline regularizer derived from a linear combination of the two-dimensional splines with first- and second-order spatial derivatives and applied it to a non-quadratic convex penalty function. To derive a PL algorithm with the spline regularizer, we used a separable paraboloidal surrogates algorithm for convex optimization. The experimental results demonstrate that our regularization method improves reconstruction accuracy in terms of both regional percentage error and contrast recovery coefficient by restoring smooth edges as well as sharp edges more accurately.