• Title/Summary/Keyword: Medical image communication

Search Result 268, Processing Time 0.026 seconds

Medical Image Data Compression Using a Variable Block Size Vector Quantization (가변 블록 벡터양자화를 이용한 의용영상 데타터 압축)

  • 박종규;정회룡
    • Journal of Biomedical Engineering Research
    • /
    • v.10 no.2
    • /
    • pp.173-178
    • /
    • 1989
  • A vector quantization technique using a variable block size was applied to image compression of digitized X -ray films. Whether the size of VQ block should be subdivided or not is determined experimentally by the threshold value. The simulation result shows that the performance of the proposed vector quantizer is suitable for the medical image coding, which is applicable to PACS( Picture Archiving and Communication System).

  • PDF

A comparative study of medical image applications: compression and transmission

  • Cho, Kyu-Cheol;Kim, Jae-Joon
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.12 no.5
    • /
    • pp.14-22
    • /
    • 2007
  • PACS is an integrated communication network system which is consists of image acquisition devices, storage archiving units, display stations, computer processors, and database management systems. In medical industry, they have been introduced the medical equipments through PACS systems based on the DICOM standard. In this paper, we have reviewed the visual quality performance of various JPEG and JPEG2000 compression options for medical images. Through the realized the transmission mode on DICOM standard, the developed DICOM viewer has been shown in medical applications.

  • PDF

Ensemble UNet 3+ for Medical Image Segmentation

  • JongJin, Park
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.1
    • /
    • pp.269-274
    • /
    • 2023
  • In this paper, we proposed a new UNet 3+ model for medical image segmentation. The proposed ensemble(E) UNet 3+ model consists of UNet 3+s of varying depths into one unified architecture. UNet 3+s of varying depths have same encoder, but have their own decoders. They can bridge semantic gap between encoder and decoder nodes of UNet 3+. Deep supervision was used for learning on a total of 8 nodes of the E-UNet 3+ to improve performance. The proposed E-UNet 3+ model shows better segmentation results than those of the UNet 3+. As a result of the simulation, the E-UNet 3+ model using deep supervision was the best with loss function values of 0.8904 and 0.8562 for training and validation data. For the test data, the UNet 3+ model using deep supervision was the best with a value of 0.7406. Qualitative comparison of the simulation results shows the results of the proposed model are better than those of existing UNet 3+.

Development of medical image processing gateway server and service based on wireless internet (무선 인터넷 기반의 의료 영상 처리 게이트웨이 서버 및 서비스 구축)

  • Moon, Sung-Rim;Jeong, Seok-Jae;Lee, Yoon-Seok;Kang, Kyung-Ran;Kim, Dong-Yoon
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11b
    • /
    • pp.922-924
    • /
    • 2005
  • 급증하는 정확하고 빠른 정보 제공의 요구 및 다양한 기술적 발달에 부응하여 본 논문은 무선 인터넷 서비스를 기반으로 하는 의료 영상 처리 게이트웨이 서버 및 서비스를 구축하고 이를 통한 의료 서비스의 질적 향상을 도모하였다. 무선 단말기인 스마트 폰의 한계를 고려하여 영상 처리가 0.5초 이상 걸리는 경우는 의료 영상 게이트웨이 서버(Medical Image Gateway Server: MIGS)에서 처리하여 전송하고, 나머지 경우에는 직접 연산하여 적절한 영상 처리 서비스를 제공한다.

  • PDF

Volume Rendering Architecture of Mobile Medical Image using Cloud Computing (클라우드 컴퓨팅을 활용한 모바일 의료영상 볼륨렌더링 아키텍처)

  • Lee, Woongkyu;Nam, Doohee
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.4
    • /
    • pp.101-106
    • /
    • 2014
  • The era came that by having fastest internet and smart phone makes cloud computing really a big merit. This paper proposes architecture for medical image volume rendering in mobile environment using cloud computing. This architecture to replace expensive workstation server and storage it use one of the service of cloud computing IaaS(Infrastructure as a Service). And this paper propose to use webGL to get rid of restriction of mobile hardware. By this research, it is expected that medical image volume rendering service in mobile environment is more effective and can be a foundation work.

On Realization Medical Imaging Viewer based on DICOM Standard

  • Cho, Kyu-Cheol;Kim, Jae-Joon
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2005.11a
    • /
    • pp.157-160
    • /
    • 2005
  • PACS is an integrated communication network system which is consists of image acquisition devices, storage archiving units, display stations, computer processors, and database management systems. In medical industry, they have been introduced the medical equipments through PACS systems based on the DICOM standard. In this paper, we have reviewed the performance of JPEG and JPEG2000 used as medical image compression and realized the transmission mode on DICOM standard.

  • PDF

Application of PET/CT Volume Rendering Technique to Improve Patient Satisfaction (환자의 만족도 향상을 위한 PET/CT Volume Rendering Technique 적용)

  • Jang, Dong-Gun;Lee, Sang-ho
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.6
    • /
    • pp.877-881
    • /
    • 2021
  • Customer satisfaction is a very important factor in the Korean medical system. However, the field of medical imaging is very difficult for the general public to understand. Therefore, in this study, as a way to solve the communication problem between the medical staff and the patient, the PET/CT image was reconstructed using the Volume Rendering technique to increase patient satisfaction. VRT was performed on 360 cancer patients who had undergone PET/CT examination. As a result of a satisfaction survey on 100 patients, all 100 patients showed that the VRT image was superior to the existing image. PET/CT is not a device that observes detailed anatomical shapes, such as CT or MRI, but an image that shows a strong signal of cancer and can easily produce a VRT image. These VRT images can be expressed three-dimensionally so that the general public can easily understand them, so communication between medical staff and patients can be improved more efficiently, and it is expected that the patient's "right to know" will be satisfied.

Medical Image Enhancement Using an Adaptive Weight and Threshold Values (적응적 가중치와 문턱치를 이용한 의료영상의 화질 향상)

  • Kim, Seung-Jong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.5
    • /
    • pp.205-211
    • /
    • 2012
  • By using an adaptive threshold and weight based on the wavelet transform and Haar transform, a novel image enhancement algorithm is proposed. First, a medical image was decomposed with wavelet transform and all high-frequency sub-images were decomposed with Haar transform. Secondly, noise in the frequency domain was reduced by the proposed soft-threshold method. Thirdly, high-frequency coefficients were enhanced by the proposed weight values in different sub-images. Then, the enhanced image was obtained through the inverse Haar transform and wavelet transform. But the pixel range of the enhanced image is narrower than a normal image. Lastly, the image's histogram was stretched by nonlinear histogram equalization. Experiments showed that the proposed method can be not only enhance an image's details but can also preserve its edge features effectively.

Image-Centric Integrated Data Model of Medical Information by Diseases: Two Case Studies for AMI and Ischemic Stroke

  • Lee, Meeyeon;Park, Ye-Seul;Lee, Jung-Won
    • Journal of Information Processing Systems
    • /
    • v.12 no.4
    • /
    • pp.741-753
    • /
    • 2016
  • In the medical fields, many efforts have been made to develop and improve Hospital Information System (HIS) including Electronic Medical Record (EMR), Order Communication System (OCS), and Picture Archiving and Communication System (PACS). However, materials generated and used in medical fields have various types and forms. The current HISs separately store and manage them by different systems, even though they relate to each other and contain redundant data. These systems are not helpful particularly in emergency where medical experts cannot check all of clinical materials in the golden time. Therefore, in this paper, we propose a process to build an integrated data model for medical information currently stored in various HISs. The proposed data model integrates vast information by focusing on medical images since they are most important materials for the diagnosis and treatment. Moreover, the model is disease-specific to consider that medical information and clinical materials including images are different by diseases. Two case studies show the feasibility and the usefulness of our proposed data model by building models about two diseases, acute myocardial infarction (AMI) and ischemic stroke.

Medical Image Verification Watermarking for Healthcare Information Management

  • Choi, Un-Sook;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of Multimedia Information System
    • /
    • v.4 no.4
    • /
    • pp.205-210
    • /
    • 2017
  • This paper presents a verification watermarking applied to healthcare information management. The proposed method uses the whole region based on the public-key cryptograph, which is transformed by the DWT transform to integrity verification. Furthermore, the public-key cryptograph algorithm is used for the embedded watermark image. We adaptively select the upper bit-plane including the LSB parts of each block when the watermark is inserted.