• Title/Summary/Keyword: Medical data mining

Search Result 203, Processing Time 0.022 seconds

Extracting of Interest Issues Related to Patient Medical Services for Small and Medium Hospital by SNS Big Data Text Mining and Social Networking (중소병원 환자의료서비스에 관한 관심 이슈 도출을 위한 SNS 빅 데이터 텍스트 마이닝과 사회적 연결망 적용)

  • Hwang, Sang Won
    • Korea Journal of Hospital Management
    • /
    • v.23 no.4
    • /
    • pp.26-39
    • /
    • 2018
  • Purposes: The purpose of this study is to analyze the issue of interest in patient medical service of small and medium hospitals using big data. Methods: The method of this study was implemented by data mining and social network using SNS big data. The analysis tool were extracted key keywords and analyzed correlation by using Textom, Ucinet6 and NetDraw program. Findings: In the results of frequency, the network-centered and closeness centrality analysis, It was shown that the government center is interested in the major explanations and evaluations of the technology, information, security, safety, cost and problems of small and medium hospitals, coping with infections, and actual involvement in bank settlement. And, were extracted care for disabilities such as pediatrics, dentistry, obstetrics and gynecology, dementia, nursing, the elderly, and rehabilitation. Practical Implications: Future studies will be more useful if analyzed the needs of customers for medical services in the metropolitan area and provinces may be different in the small and medium hospitals to be studied, further classification studies.

A Mining-based Healthcare Multi-Agent System in Ubiquitous Environments (마이닝 기반 유비쿼터스 헬스케어 멀티에이전트 시스템)

  • Kang, Eun-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.9
    • /
    • pp.2354-2360
    • /
    • 2009
  • Healthcare is a field where ubiquitous computing is most widely used. We propose a mining-based healthcare multi-agent system for ubiquitous computing environments. This proposed scheme select diagnosis patterns using mining in the real-time biosignal data obtained from a patient's body. In addition, we classify them into normal, emergency and be ready for an emergency. This proposed scheme can deal with the enormous quantity of real-time sensing data and performs analysis and comparison between the data of patient's history and the real-time sensory data. We separate Association rule exploration into two data groups: one is the existing enormous quantity of medical history data. The other group is real-time sensory data which is collected from sensors measuring body temperature, blood pressure, pulse. Proposed system has advantage that can handle urgent situation in the far away area from hospital through PDA and mobile device. In addition, by monitoring condition of patient in a real time base, it shortens time and expense and supports medical service efficiently.

Clustering for Home Healthcare Service Satisfaction using Parameter Selection

  • Lee, Jae Hong;Kim, Hyo Sun;Jung, Yong Gyu;Cha, Byung Heon
    • International Journal of Advanced Culture Technology
    • /
    • v.7 no.2
    • /
    • pp.238-243
    • /
    • 2019
  • Recently, the importance of big data continues to be emphasized, and it is applied in various fields based on data mining techniques, which has a great influence on the health care industry. There are many healthcare industries, but only home health care is considered here. However, applying this to real problems does not always give perfect results, which is a problem. Therefore, data mining techniques are used to solve these problems, and the algorithms that affect performance are evaluated. This paper focuses on the effects of healthcare services on patient satisfaction and satisfaction. In order to use the CVParameterSelectin algorithm and the SMOreg algorithm of the classify method of data mining, it was evaluated based on the experiment and the verification of the results. In this paper, we analyzed the services of home health care institutions and the patient satisfaction analysis based on the name, address, service provided by the institution, mood of the patients, etc. In particular, we evaluated the results based on the results of cross validation using these two algorithms. However, the existence of variables that affect the outcome does not give a perfect result. We used the cluster analysis method of weka system to conduct the research of this paper.

Suggestions for the Study of Acupoint Indications in the Era of Artificial Intelligence (인공지능시대의 경혈 주치 연구를 위한 제언)

  • Chae, Youn Byoung
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.35 no.5
    • /
    • pp.132-138
    • /
    • 2021
  • Artificial intelligence technology sheds light on new ways of innovating acupuncture research. As acupoint selection is specific to target diseases, each acupoint is generally believed to have a specific indication. However, the specificity of acupoint selection may be not always same with the specificity of acupoint indication. In this review, we propose that the specificity of acupoint indication can be inferred from clinical data using reverse inference. Using forward inference, the prescribed acupoints for each disease can be quantified for the specificity of acupoint selection. Using reverse inference, targeted diseases for each acupoint can be quantified for the specificity of acupoint indication. It is noteworthy that the selection of an acupoint for a particular disease does not imply the acupoint has specific indications for that disease. Electronic medical record includes various symptoms and chosen acupoint combinations. Data mining approach can be useful to reveal the complex relationships between diseases and acupoints from clinical data. Combining the clinical information and the bodily sensation map, the spatial patterns of acupoint indication can be further estimated. Interoperable medical data should be collected for medical knowledge discovery and clinical decision support system. In the era of artificial intelligence, machine learning can reveal the associations between diseases and prescribed acupoints from large scale clinical data warehouse.

Data Mining Techniques for Medical Informatics: Application to SNP Analysis

  • Chun, Se-Hak;Kim, Jin;Park, Yoon-Joo;Ham, Ki-Baek;Chun, Se-Chul
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2005.11a
    • /
    • pp.258-263
    • /
    • 2005
  • Haplotype-based analysis using high-density SNP markers have gained a great attention in evaluating genes in gene analysis and various clinical situations. However, there has been no research on disease diagnostic modeling based on SNPs analysis to our knowledge. The purpose of this study is to explore how knowledge discovery techniques are applied in medical informatics area and proposes a Case Based Reasoning (CBR) technique for diagnosis of gastric caner using Single Nucleotide Polymorphism(SNP).

  • PDF

StrokeBase: A Database of Cerebrovascular Disease-related Candidate Genes

  • Kim, Young-Uk;Kim, Il-Hyun;Bang, Ok-Sun;Kim, Young-Joo
    • Genomics & Informatics
    • /
    • v.6 no.3
    • /
    • pp.153-156
    • /
    • 2008
  • Complex diseases such as stroke and cancer have two or more genetic loci and are affected by environmental factors that contribute to the diseases. Due to the complex characteristics of these diseases, identifying candidate genes requires a system-level analysis of the following: gene ontology, pathway, and interactions. A database and user interface, termed StrokeBase, was developed; StrokeBase provides queries that search for pathways, candidate genes, candidate SNPs, and gene networks. The database was developed by using in silico data mining of HGNC, ENSEMBL, STRING, RefSeq, UCSC, GO, HPRD, KEGG, GAD, and OMIM. Forty candidate genes that are associated with cerebrovascular disease were selected by human experts and public databases. The networked cerebrovascular disease gene maps also were developed; these maps describe genegene interactions and biological pathways. We identified 1127 genes, related indirectly to cerebrovascular disease but directly to the etiology of cerebrovascular disease. We found that a protein-protein interaction (PPI) network that was associated with cerebrovascular disease follows the power-law degree distribution that is evident in other biological networks. Not only was in silico data mining utilized, but also 250K Affymetrix SNP chips were utilized in the 320 control/disease association study to generate associated markers that were pertinent to the cerebrovascular disease as a genome-wide search. The associated genes and the genes that were retrieved from the in silico data mining system were compared and analyzed. We developed a well-curated cerebrovascular disease-associated gene network and provided bioinformatic resources to cerebrovascular disease researchers. This cerebrovascular disease network can be used as a frame of systematic genomic research, applicable to other complex diseases. Therefore, the ongoing database efficiently supports medical and genetic research in order to overcome cerebrovascular disease.

Estimation of a Nationwide Statistics of Hernia Operation Applying Data Mining Technique to the National Health Insurance Database (데이터마이닝 기법을 이용한 건강보험공단의 수술 통계량 근사치 추정 -허니아 수술을 중심으로-)

  • Kang, Sung-Hong;Seo, Seok-Kyung;Yang, Yeong-Ja;Lee, Ae-Kyung;Bae, Jong-Myon
    • Journal of Preventive Medicine and Public Health
    • /
    • v.39 no.5
    • /
    • pp.433-437
    • /
    • 2006
  • Objectives: The aim of this study is to develop a methodology for estimating a nationwide statistic for hernia operations with using the claim database of the Korea Health Insurance Cooperation (KHIC). Methods: According to the insurance claim procedures, the claim database was divided into the electronic data interchange database (EDI_DB) and the sheet database (Paper_DB). Although the EDI_DB has operation and management codes showing the facts and kinds of operations, the Paper_DB doesn't. Using the hernia matched management code in the EDI_DB, the cases of hernia surgery were extracted. For drawing the potential cases from the Paper_DB, which doesn't have the code, the predictive model was developed using the data mining technique called SEMMA. The claim sheets of the cases that showed a predictive probability of an operation over the threshold, as was decided by the ROC curve, were identified in order to get the positive predictive value as an index of usefulness for the predictive model. Results: Of the claim databases in 2004, 14,386 cases had hernia related management codes with using the EDI system. For fitting the models with applying the data mining technique, logistic regression was chosen rather than the neural network method or the decision tree method. From the Paper_DB, 1,019 cases were extracted as potential cases. Direct review of the sheets of the extracted cases showed that the positive predictive value was 95.3%. Conclusions: The results suggested that applying the data mining technique to the claim database in the KHIC for estimating the nationwide surgical statistics would be useful from the aspect of execution and cost-effectiveness.

Segmenting Outpatients by the Analysis of Usage and Revenue Indicators (병원이용빈도와 진료수익성 분석을 통한 외래환자 시장세분화)

  • Ryu, Sang-Hee;Paik, Soo-Kyung
    • Korea Journal of Hospital Management
    • /
    • v.7 no.4
    • /
    • pp.152-171
    • /
    • 2002
  • The research objective is segmenting outpatients for CRM(Customer Relationship Management) in medical service. Using modified RFM(Recently, Frequency, Monetary) method based on frequency and profitability in the hospital, the data were analyzed with the data mining technique. The result can be summarized as follows : The outpatients were semented into the four groups: 1) the loyal patient group, who have kept visiting until recently and give high profitability; 2) potential loyal patient group, who give lower profitability but high frequency of use, 3) potential withdrawer patient group, who have lower frequency of use but give high profitability and; 4) withdrawer patient group, who give low frequency of use and have not visited recently.

  • PDF

Genetic classification of various familial relationships using the stacking ensemble machine learning approaches

  • Su Jin Jeong;Hyo-Jung Lee;Soong Deok Lee;Ji Eun Park;Jae Won Lee
    • Communications for Statistical Applications and Methods
    • /
    • v.31 no.3
    • /
    • pp.279-289
    • /
    • 2024
  • Familial searching is a useful technique in a forensic investigation. Using genetic information, it is possible to identify individuals, determine familial relationships, and obtain racial/ethnic information. The total number of shared alleles (TNSA) and likelihood ratio (LR) methods have traditionally been used, and novel data-mining classification methods have recently been applied here as well. However, it is difficult to apply these methods to identify familial relationships above the third degree (e.g., uncle-nephew and first cousins). Therefore, we propose to apply a stacking ensemble machine learning algorithm to improve the accuracy of familial relationship identification. Using real data analysis, we obtain superior relationship identification results when applying meta-classifiers with a stacking algorithm rather than applying traditional TNSA or LR methods and data mining techniques.

Institutional Applications of Eclipse Scripting Programming Interface to Clinical Workflows in Radiation Oncology

  • Kim, Hojin;Kwak, Jungwon;Jeong, Chiyoung;Cho, Byungchul
    • Progress in Medical Physics
    • /
    • v.28 no.3
    • /
    • pp.122-128
    • /
    • 2017
  • Eclipse Scripting Application Programming Interface (ESAPI) was devised to enhance the efficiency in such treatment related workflows as contouring, treatment planning, plan quality measure, and data-mining by communicating with the treatment planning system (TPS). It is provided in the form of C# programming based toolbox, which could be modified to fit into the clinical applications. The Scripting program, however, does not offer all potential functionalities that the users intend to develop. The shortcomings can be overcome by combining the Scripting programming with user-executable program on Windows or Linux. The executed program has greater freedom in implementation, which could strengthen the ability and availability of the Scripting on the clinical applications. This work shows the use of the Scripting programming throughout the simple modification of the given toolbox. Besides, it presents the implementation of combining both Scripting and user-executed programming based on MATLAB, applied to automated dynamic MLC wedge and FIF treatment planning procedure for promoting the planning efficiency.