• Title/Summary/Keyword: Medical Sensor Networks

Search Result 77, Processing Time 0.027 seconds

Analysis and Experiment of 2.4GHz Radio Frequency Interference for Wireless Sensor Networks-based Applications (WSNs 기반의 어플리케이션을 위한 2.4GHz 대역의 주파수 간섭 분석 및 검증 실험)

  • Kwon, Jong-Won;Ahn, Gwang-Hoon;Kim, Seok-Rae;Kim, Hie-Sik;Kang, Sang-Hyuk
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.290-292
    • /
    • 2009
  • With advance in technologies for wireless sensor networks(WSNs), 2.4 GHz band has become gradually attractive due to increase in low-power wireless communication devices. Especially ZigBee(IEEE 802.15.4-based) technology whose frequency band includes the 2.4GHz industrial, scientific and medical band providing nearly worldwide availability has been universally applicable to a various remote monitoring system and applications related home network system. However network throughput of these systems is significantly deteriorated due to this ISM band is a license-exemption used in a variety of low-power wireless communication devices. For instance, other IEEE 802 wireless standards such as Bluetooth, WLAN, Wi-Fi and others cause radio interference to ZigBee. The experiments was carried out to analyze radio frequency interference between heterogeneous devices using ISM bands to improve the limited frequency utility factor. Finally this paper suggests a frequency hopping-based adaptive multi-channel methods to decrease interference with empirical results.

  • PDF

A Practical Authentication System for Wireless Body Area Networks(WBAN) (무선 인체 영역 네트워크(WBAN)를 위한 실용적인 인증 시스템)

  • Ahn, Hae-Soon;Yoon, Eun-Jun;Bu, Ki-Dong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.4C
    • /
    • pp.290-296
    • /
    • 2012
  • In this paper, we propose a practical authentication system based on Wireless Body Area Networks(WBAN) for U-healthcare medical information environments. The proposed authentication system is based on symmetric cryptosystem such as AES and is designed to not only provide security such as data secrecy, data authentication, data integrity, but also prevent replay attack by adopting timestamp technique and perform secure authentication between sensor node, master node, base-station, and medical server.

Mutual Authentication Protocol based on the Effective Divided Session for the Secure Transmission of Medical Information in u-Health (유헬스에서 안전한 생체정보전송을 위한 동적인 유효세션기반의 상호인증 프로토콜)

  • Lee, Byung-Mun;Lim, Heon-Cheol;Kang, Un-Ku
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.2
    • /
    • pp.142-151
    • /
    • 2011
  • All medical information over sensor networks need to transmit and process securely in the u-Health services. The reliability of transmission between u-Health medical sensor devices and gateway is very important issue. When the user moves to other place with u-Health devices, its signal strength is going down and is far from the coverage of gateway. In this case, Malicious user can be carried out an intrusion under the situation. And also rogue gateway can be tried to steal medical information. Therefore, it needs mutual authentication between sensor devices and gateway. In this paper, we design a mutual authentication protocol which divided sessions from an authenticated session are updated periodically. And in order to reduce the traffic overhead for session authentication, we also introduce dynamic session management according to sampling rate of medical sensor type. In order to verify this, we implemented the programs for the test-bed, and got an overall success from three types of experiment.

Security Model for Tree-based Routing in Wireless Sensor Networks: Structure and Evaluation

  • Almomani, Iman;Saadeh, Maha
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.4
    • /
    • pp.1223-1247
    • /
    • 2012
  • The need for securing Wireless Sensor Networks (WSNs) is essential especially in mission critical fields such as military and medical applications. Security techniques that are used to secure any network depend on the security requirements that should be achieved to protect the network from different types of attacks. Furthermore, the characteristics of wireless networks should be taken into consideration when applying security techniques to these networks. In this paper, energy efficient Security Model for Tree-based Routing protocols (SMTR) is proposed. In SMTR, different attacks that could face any tree-based routing protocol in WSNs are studied to design a security reference model that achieves authentication and data integrity using either Message Authentication Code (MAC) or Digital Signature (DS) techniques. The SMTR communication and processing costs are mathematically analyzed. Moreover, SMTR evaluation is performed by firstly, evaluating several MAC and DS techniques by applying them to tree-based routing protocol and assess their efficiency in terms of their power requirements. Secondly, the results of this assessment are utilized to evaluate SMTR phases in terms of energy saving, packet delivery success ratio and network life time.

Ultra-Low Power MICS RF Transceiver Design for Wireless Sensor Network (WSN 을 위한 초저전력 MICS RF 송수신기 기술 개요 및 설계 기법)

  • Gyu-won Kim;Yu-jung Kim;Junghwan Han
    • Transactions on Semiconductor Engineering
    • /
    • v.2 no.1
    • /
    • pp.9-16
    • /
    • 2024
  • This paper discusses the design of bio-implanted ultra-low-power MICS RF transceivers for wireless sensor networks. The 400 MHz MICS standard was considered for the implementation of the WBAN wireless sensor system, indirectly minimizing radio propagation losses in the human body and the inference with surrounding networks. This paper includes link budget, various transmission and reception architectures for a system design and ultra-low power transceiver circuit techniques for the implementation of RF transceivers that meet MICS standards.

Design and Implementation of Tiny TCP/IPv6 Protocol for Wireless Sensor Networks (센서 네트워크를 위한 초경량 TCP/IPv6 프로토콜의 설계 및 구현)

  • Kim, Shin-Jae;Kim, Young-Gyun;Lee, Wan-Jik;Heo, Seok-Yeol;Shin, Bum-Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.8
    • /
    • pp.1955-1961
    • /
    • 2009
  • As a core technology realizing ubiquitous world, recent researches are being concentrated to wireless sensor network. However, most research results were focused to the sensor network technology itself, even though interworking between the sensor network and Internet is also one of primitive requirements for ubiquitous world. In this paper, we design the tiny TCP/IPv6 profile which makes it possible to inter-connect the sensor network device to IPv6 based Internet. To confirm operation of the designed profile, we experimentally implemented and evaluated minimum TCP/IPv6 based on TinyOS. The evaluation result shows that throughput of our tiny TCP/IPv6 is almost same as that of TinyOS component.

Comprehensive Analysis and Evaluation of Mobile S-MAC Protocol in Wireless Sensor Network

  • Alanazi, Adwan Alownie
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.358-366
    • /
    • 2022
  • Wireless sensor networks (WSN) are becoming widely used in collecting and sensing information in different fields such as in the medical area, smart phone industry and military environment. The main concern here is reducing the power consumption because it effects in the lifetime of wireless sensor during commutation because it may be work in some environment like sensor in the battlefields where is not easy to change the battery for a node and that may decrease the efficiency of that node and that may affect the network traffic may be interrupted because one or more nodes stop working. In this paper we implement, simulate, and investigate S-MAC protocol with mobility support and show the sequence of events the sender and receiver go through. We tested some parameters and their impacts of on the performance including System throughput, number of packets successfully delivered per second, packet delay, average packet delay before successful transmission.

A Novel WBAN MAC protocol with Improved Energy Consumption and Data Rate

  • Rezvani, Sanaz;Ghorashi, S. Ali
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.9
    • /
    • pp.2302-2322
    • /
    • 2012
  • Wireless Body Area Networks (WBANs) are introduced as an enabling technology in tele-health for patient monitoring. Designing an efficient Medium Access Control (MAC) protocol is the main challenge in WBANs because of their various applications and strict requirements such as low level of energy consumption, low transmission delay, the wide range of data rates and prioritizing emergency data. In this paper, we propose a new MAC protocol to provide different requirements of WBANs targeted for medical applications. The proposed MAC provides an efficient emergency response mechanism by considering the correlation between medical signals. It also reduces the power consumption of nodes by minimizing contention access, reducing the probability of the collision and using an efficient synchronization algorithm. In addition, the proposed MAC protocol increases the data rate of the nodes by allocating the resources according to the condition of the network. Analytical and simulation results show that the proposed MAC protocol outperforms IEEE 802.15.4 MAC protocol in terms of power consumption level as well as the average response delay. Also, the comparison results of the proposed MAC with IEEE 802.15.6 MAC protocol show a tradeoff between average response delay and medical data rate.

Web based anticancer drug management system using ubiquitous sensor network and RFID (USN과 RFID를 이용한 웹 기반 항암제 관리 시스템)

  • Yoo, Sun-K.;Kim, Soo-Jung;Park, Jung-Jin;Kim, Dong-Keun;Bae, Ha-Su;Chang, Byung-Chul
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.229-235
    • /
    • 2008
  • In order to monitor the anticancer drug in stable conditions, the Web based anticancer drug management system and alarm services were constructed and assessed in this study. Anticancer drug should be exact to the correct patient in the right environment. To overcome the restriction of existing equipment that only monitors fragmentarily, temperature and humidity were continuously monitored to maintain stable environments using sensor networks and RFID for the monitoring and management of anticancer drug. Construction drug identification and the effect of normal air outside the anticancer dispensary with obstacles were evaluated in working hour. Pre-installed control system in the dispensary could be alternated with auto sensing and alarming. We expected that the efficiency of anticancer drug management and the reliability of drug medication by handwork would be increase accordingly.

The Design of mBodyCloud System for Sensor Information Monitoring in the Mobile Cloud Environment

  • Park, Sungbin;Moon, Seok-Jae;Lee, Jong-Yong;Jung, Kye-Dong
    • International journal of advanced smart convergence
    • /
    • v.5 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • Recently, introduced a cloud computing technology to the IT industry, smart phones, it has become possible connection between mobility terminal such as a tablet PC. For dissemination and popularization of movable wireless terminal, the same operation have focused on a viable mobile cloud in various terminal. Also, it evolved Wireless Sensor Network(WSN) technology, utilizing a Body Sensor Network(BSN), which research is underway to build large Ubiquitous Sensor Network(USN). BSN is based on large-scale sensor networks, it integrates the state information of the patient's body, it has been the need to build a managed system. Also, by transferring the acquired sensor information to HIS(Hospital Information System), there is a need to frequently monitor the condition of the patient. Therefore, In this paper, possible sensor information exchange between terminals in a mobile cloud environment, by integrating the data obtained by the body sensor HIS and interoperable data DBaaS (DataBase as a Service) it will provide a base of mBodyCloud System. Therefore, to provide an integrated protocol to include the sensor data to a standard HL7(Health Level7) medical information data.