• Title/Summary/Keyword: Medical Imaging

Search Result 4,213, Processing Time 0.027 seconds

Detection of Perivalvular Abscess with Late Gadolinium-Enhanced MR Imaging in a Patient with Infective Endocarditis

  • Ryu, Seong-Yoon;Kim, Hae Jin;Kim, Sung Mok;Park, Sung-Ji;Choe, Yeon Hyeon
    • Investigative Magnetic Resonance Imaging
    • /
    • v.20 no.1
    • /
    • pp.75-79
    • /
    • 2016
  • We report a case of perivalvular abscess in a 66-year-old man with infective endocarditis, diagnosed by late gadolinium-enhanced (LGE) cardiovascular magnetic resonance (CMR) imaging. No clinical features suspicious of infective endocarditis were noted, however, transthoracic echocardiography revealed non-specific echogenic focal wall thickening at mitral-aortic intervalvular fibrosa. Perivalvular abscess in the aortic valve was demonstrated as focal wall thickening between the anterior mitral leaflet and the non-coronary cusp of the aortic valve with peripheral enhancement and central low signal intensity on LGE CMR imaging. Other features suggestive of infective endocarditis, such as neither vegetation nor valvular perforation were present. The perivalvular abscess did not grow after intensive intravenous antibiotics therapy, and the patient was discharged without surgical treatment. CMR with LGE provided an early accurate diagnosis of perivalvular abscess. The diagnosis of perivalvular abscess using LGE CMR imaging was not previously reported in Korea.

Motion Correction in PET/CT Images (PET/CT 영상 움직임 보정)

  • Woo, Sang-Keun;Cheon, Gi-Jeong
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.42 no.2
    • /
    • pp.172-180
    • /
    • 2008
  • PET/CT fused image with anatomical and functional information have improved medical diagnosis and interpretation. This fusion has resulted in more precise localization and characterization of sites of radio-tracer uptake. However, a motion during whole-body imaging has been recognized as a source of image quality degradation and reduced the quantitative accuracy of PET/CT study. The respiratory motion problem is more challenging in combined PET/CT imaging. In combined PET/CT, CT is used to localize tumors and to correct for attenuation in the PET images. An accurate spatial registration of PET and CT image sets is a prerequisite for accurate diagnosis and SUV measurement. Correcting for the spatial mismatch caused by motion represents a particular challenge for the requisite registration accuracy as a result of differences in PET/CT image. This paper provides a brief summary of the materials and methods involved in multiple investigations of the correction for respiratory motion in PET/CT imaging, with the goal of improving image quality and quantitative accuracy.

Development of a Real-time Medical Imaging System Combined with Laser Speckle Contrast Imaging and Fluorescence Imaging (형광과 레이저 스펙클 대조도 이미징을 결합한 실시간 의료영상 시스템 개발)

  • Shim, Min Jae;Kim, Yikeun;Ko, Taek Yong;Choi, Jin Hyuk;Ahn, Yeh-Chan
    • Journal of Biomedical Engineering Research
    • /
    • v.42 no.3
    • /
    • pp.116-124
    • /
    • 2021
  • It is important to differentiate between the target tissue (or organ) and the rest of the tissue before incision during surgery. And when it is necessary to preserve the differentiated tissues, the blood vessels connected to the tissue must be preserved together. Various non-invasive medical imaging methods have been developed for this purpose. We aimed to develop a medical imaging system that can simultaneously apply fluorescence imaging using indocyanine green (ICG) and laser speckle contrast imaging (LSCI) using laser speckle patterns. We designed to collect images directed to the two cameras on a co-axial optical path and to compensate equal optical path length for two optical designs. The light source used for fluorescence and LSCI the same 785 nm wavelength. This system outputs real-time images and is designed to intuitively distinguish target tissues or blood vessels. This system outputs LSCI images up to 37 fps through parallel processing. Fluorescence for ICG and blood flow in animal models were observed throughout the experiment.

Quantitative Measurements of 3-D Imaging with Computed Tomography using Human Skull Phantom

  • Kim, Dong-Wook;Kim, Hee-Joung;Haijo Jung;Soonil Hong;Yoo, Young-Il;Kim, Dong-Hyeon;Kim, Kee-Deog
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.506-508
    • /
    • 2002
  • As an advancement of medical imaging modalities and analyzing software with multi-function, active researches to acquire high contrast and high resolution image being done. In recently, development of medical imaging modalities like as Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) is aiming to display anatomical structure more accuracy and faster. Thus, one of the important areas in CT today is the use of CT scanner for the quantitative evaluation of 3-D reconstruction images from 2-D tomographic images. In CT system, the effective slice thickness and the quality of 3-D reconstructed image will be influenced by imaging acquisition parameters (e.g. pitch and scan mode). In diagnosis and surgical planning, the accurate distance measurements of 3-D anatomical structures play an important role and the accuracy of distance measurements will depend on the acquisition parameters such as slice thickness, pitch, and scan mode. The skull phantom was scanned with SDCT for various acquisition parameters and acquisition slice thicknesses were 3 and 5 mm, and reconstruction intervals were 1, 2, and 3 mm to each pitch. 3-D visualizations and distance measurements were performed with PC based 3-D rendering and analyzing software. Results showed that the image quality and the measurement accuracy of 3-D SDCT images are independent to the reconstruction intervals and pitches.

  • PDF

Dynamic Chest X-Ray Using a Flat-Panel Detector System: Technique and Applications

  • Akinori Hata;Yoshitake Yamada;Rie Tanaka;Mizuki Nishino;Tomoyuki Hida;Takuya Hino;Masako Ueyama;Masahiro Yanagawa;Takeshi Kamitani;Atsuko Kurosaki;Shigeru Sanada;Masahiro Jinzaki;Kousei Ishigami;Noriyuki Tomiyama;Hiroshi Honda;Shoji Kudoh;Hiroto Hatabu
    • Korean Journal of Radiology
    • /
    • v.22 no.4
    • /
    • pp.634-651
    • /
    • 2021
  • Dynamic X-ray (DXR) is a functional imaging technique that uses sequential images obtained by a flat-panel detector (FPD). This article aims to describe the mechanism of DXR and the analysis methods used as well as review the clinical evidence for its use. DXR analyzes dynamic changes on the basis of X-ray translucency and can be used for analysis of diaphragmatic kinetics, ventilation, and lung perfusion. It offers many advantages such as a high temporal resolution and flexibility in body positioning. Many clinical studies have reported the feasibility of DXR and its characteristic findings in pulmonary diseases. DXR may serve as an alternative to pulmonary function tests in patients requiring contact inhibition, including patients with suspected or confirmed coronavirus disease 2019 or other infectious diseases. Thus, DXR has a great potential to play an important role in the clinical setting. Further investigations are needed to utilize DXR more effectively and to establish it as a valuable diagnostic tool.

What Is New in the 2017 World Health Organization Classification and 8th American Joint Committee on Cancer Staging System for Pancreatic Neuroendocrine Neoplasms?

  • Jooae Choe;Kyung Won Kim;Hyoung Jung Kim;Dong Wook Kim;Kyu Pyo Kim;Seung-Mo Hong;Jin-Sook Ryu;Sree Harsha Tirumani;Katherine Krajewski;Nikhil Ramaiya
    • Korean Journal of Radiology
    • /
    • v.20 no.1
    • /
    • pp.5-17
    • /
    • 2019
  • The diagnosis and management of pancreatic neuroendocrine neoplasms (NENs) have evolved significantly in recent years. There are several diagnostic and therapeutic challenges and controversies regarding the management of these lesions. In this review, we focus on the recent significant changes and controversial issues regarding the diagnosis and management of NENs and discuss the role of imaging in the multidisciplinary team approach.

Magnetic Resonance Imaging of Idiopathic Herniation of the Lingual Gyrus: a Case Report

  • Seok, Hee Young;Lee, Dong Hoon
    • Investigative Magnetic Resonance Imaging
    • /
    • v.21 no.3
    • /
    • pp.195-198
    • /
    • 2017
  • Idiopathic brain herniation is a rare condition. We believe that this is the first reported case of idiopathic herniation of the lingual gyrus. The case involves a 57-year-old woman presenting with frontal headache without overt visual symptoms. Magnetic resonance imaging (MRI) revealed an idiopathic herniation of the lingual gyrus of the occipital lobe extending into the quadrigeminal cistern. No other adjacent intracranial abnormalities were observed. Although some conditions may be considered in the differential diagnosis, accurate diagnosis of idiopathic brain herniation in medical practice can prevent unnecessary additional imaging procedures and invasive open biopsy in patients with typical imaging findings.