• Title/Summary/Keyword: Medical Image Information

Search Result 1,084, Processing Time 0.028 seconds

Analysis of Medical Images Using EM-based Relationship Method (EM기반 관계기법을 이용한 의료영상 분석)

  • Kim, Hyung-Il
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.12
    • /
    • pp.191-199
    • /
    • 2009
  • The integrated medical information system is an effective medical diagnosis assistance system which offers an environment in which medial images and diagnosis information can be shared. Because of the large-scale medical institutions and their cooperating organizations are operating the integrated medical information systems, they can share medical images and diagnosis information. However, this system can only stored and transmitted information without other functions. To resolve this problem and to enhance the efficiency of diagnostic activities, a medical image analysis system is necessary. In this paper, the proposed relationship method analyzes medical images for features generation. Under this method, the medical images have been segmented into several objects. The medical image features have been extracted from each segmented image. Then, extracted features were applied to the Relationship Method for medical image analysis. Several experimental results that show the effectiveness of the proposed method are also presented.

A Study on the Development Direction of Medical Image Information System Using Big Data and AI (빅데이터와 AI를 활용한 의료영상 정보 시스템 발전 방향에 대한 연구)

  • Yoo, Se Jong;Han, Seong Soo;Jeon, Mi-Hyang;Han, Man Seok
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.9
    • /
    • pp.317-322
    • /
    • 2022
  • The rapid development of information technology is also bringing about many changes in the medical environment. In particular, it is leading the rapid change of medical image information systems using big data and artificial intelligence (AI). The prescription delivery system (OCS), which consists of an electronic medical record (EMR) and a medical image storage and transmission system (PACS), has rapidly changed the medical environment from analog to digital. When combined with multiple solutions, PACS represents a new direction for advancement in security, interoperability, efficiency and automation. Among them, the combination with artificial intelligence (AI) using big data that can improve the quality of images is actively progressing. In particular, AI PACS, a system that can assist in reading medical images using deep learning technology, was developed in cooperation with universities and industries and is being used in hospitals. As such, in line with the rapid changes in the medical image information system in the medical environment, structural changes in the medical market and changes in medical policies to cope with them are also necessary. On the other hand, medical image information is based on a digital medical image transmission device (DICOM) format method, and is divided into a tomographic volume image, a volume image, and a cross-sectional image, a two-dimensional image, according to a generation method. In addition, recently, many medical institutions are rushing to introduce the next-generation integrated medical information system by promoting smart hospital services. The next-generation integrated medical information system is built as a solution that integrates EMR, electronic consent, big data, AI, precision medicine, and interworking with external institutions. It aims to realize research. Korea's medical image information system is at a world-class level thanks to advanced IT technology and government policies. In particular, the PACS solution is the only field exporting medical information technology to the world. In this study, along with the analysis of the medical image information system using big data, the current trend was grasped based on the historical background of the introduction of the medical image information system in Korea, and the future development direction was predicted. In the future, based on DICOM big data accumulated over 20 years, we plan to conduct research that can increase the image read rate by using AI and deep learning algorithms.

MEDU-Net+: a novel improved U-Net based on multi-scale encoder-decoder for medical image segmentation

  • Zhenzhen Yang;Xue Sun;Yongpeng, Yang;Xinyi Wu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.7
    • /
    • pp.1706-1725
    • /
    • 2024
  • The unique U-shaped structure of U-Net network makes it achieve good performance in image segmentation. This network is a lightweight network with a small number of parameters for small image segmentation datasets. However, when the medical image to be segmented contains a lot of detailed information, the segmentation results cannot fully meet the actual requirements. In order to achieve higher accuracy of medical image segmentation, a novel improved U-Net network architecture called multi-scale encoder-decoder U-Net+ (MEDU-Net+) is proposed in this paper. We design the GoogLeNet for achieving more information at the encoder of the proposed MEDU-Net+, and present the multi-scale feature extraction for fusing semantic information of different scales in the encoder and decoder. Meanwhile, we also introduce the layer-by-layer skip connection to connect the information of each layer, so that there is no need to encode the last layer and return the information. The proposed MEDU-Net+ divides the unknown depth network into each part of deconvolution layer to replace the direct connection of the encoder and decoder in U-Net. In addition, a new combined loss function is proposed to extract more edge information by combining the advantages of the generalized dice and the focal loss functions. Finally, we validate our proposed MEDU-Net+ MEDU-Net+ and other classic medical image segmentation networks on three medical image datasets. The experimental results show that our proposed MEDU-Net+ has prominent superior performance compared with other medical image segmentation networks.

Performance Evaluation of Medical Image Transmission System using TH UWB-IR Technology

  • Lee, Yang-Sun;Kang, Heau-Jo
    • Journal of information and communication convergence engineering
    • /
    • v.4 no.3
    • /
    • pp.97-100
    • /
    • 2006
  • In this paper, the transmission service for medical image is proposed via IEEE 802.15.4a on WPAN environment. Also, transmission and receiving performance of medical image using TH UWB-IR system is evaluated on indoor multi-path fading environment. On the results, the proposed scheme can solve the problem of interference from the medical equipment in same frequency band, and minimize the loss due to the indoor multi-path fading environment. Therefore, the transmission with low power usage is possible.

Advances in Optimal Detection of Cancer by Image Processing; Experience with Lung and Breast Cancers

  • Mohammadzadeh, Zeinab;Safdari, Reza;Ghazisaeidi, Marjan;Davoodi, Somayeh;Azadmanjir, Zahra
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.14
    • /
    • pp.5613-5618
    • /
    • 2015
  • Clinicians should looking for techniques that helps to early diagnosis of cancer, because early cancer detection is critical to increase survival and cost effectiveness of treatment, and as a result decrease mortality rate. Medical images are the most important tools to provide assistance. However, medical images have some limitations for optimal detection of some neoplasias, originating either from the imaging techniques themselves, or from human visual or intellectual capacity. Image processing techniques are allowing earlier detection of abnormalities and treatment monitoring. Because the time is a very important factor in cancer treatment, especially in cancers such as the lung and breast, imaging techniques are used to accelerate diagnosis more than with other cancers. In this paper, we outline experience in use of image processing techniques for lung and breast cancer diagnosis. Looking at the experience gained will help specialists to choose the appropriate technique for optimization of diagnosis through medical imaging.

Medical Image Retrieval with Relevance Feedback via Pairwise Constraint Propagation

  • Wu, Menglin;Chen, Qiang;Sun, Quansen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.1
    • /
    • pp.249-268
    • /
    • 2014
  • Relevance feedback is an effective tool to bridge the gap between superficial image contents and medically-relevant sense in content-based medical image retrieval. In this paper, we propose an interactive medical image search framework based on pairwise constraint propagation. The basic idea is to obtain pairwise constraints from user feedback and propagate them to the entire image set to reconstruct the similarity matrix, and then rank medical images on this new manifold. In contrast to most of the algorithms that only concern manifold structure, the proposed method integrates pairwise constraint information in a feedback procedure and resolves the small sample size and the asymmetrical training typically in relevance feedback. We also introduce a long-term feedback strategy for our retrieval tasks. Experiments on two medical image datasets indicate the proposed approach can significantly improve the performance of medical image retrieval. The experiments also indicate that the proposed approach outperforms previous relevance feedback models.

심전도

  • 서병설
    • Journal of Biomedical Engineering Research
    • /
    • v.9 no.1
    • /
    • pp.131-134
    • /
    • 1988
  • In this paper, MIIS (Medical Image Information System) has been designed and implemented using INGRES RDBMS, which is based on a client/server architecture. The implemented system allows users to register and retrieve patient information, medical images and diagnostic reports. It also provides the function to display these information on workstation windows simultaneously by using the designed menu-driven graphic user interface. The medical image compression/decompression techniques are implemented and integrated into the medical image database system for the efficient data storage and the fast access through the network.

  • PDF

Implementation of a scout image-based medical image information system (Scout 영상 기반의 의료영상 정보시스템 구현)

  • Kim, Jae-Joon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.44 no.3
    • /
    • pp.43-48
    • /
    • 2007
  • The medical imaging processing area with the development of high-speed Internet and the portable embedded system under prevailed ubiquitous environment is quick in research and development for the system that can search and decipher the patient's information in anytime and anywhere. Especially, the new applications demand utilizing scout images besides diagnostic purposes. With the development of ubiquitous system, medical image viewers are utilizing to the hospitals combined with PACS system and Web browser. This paper implements the mobile terminal based medical image viewing system that shows the potential in wireless environment.

Image Registration in Medical Applications

  • Hong, Helen
    • Journal of International Society for Simulation Surgery
    • /
    • v.1 no.2
    • /
    • pp.62-66
    • /
    • 2014
  • Image registration is the process for finding the correct geometrical transformation that brings one image in precise spatial correspondence with another image. There are limitations on the visualization of simple overlay between two different modality images because two different modality images have different anatomical information, resolution, and viewpoint. In this paper, various image registration methods and their applications are introduced. With the recent advance of medical imaging device, image registration is used actively in diagnosis support, treatment planning, surgery guidance and monitoring the disease progression.

Semi-Automated Image Processing System for Medical Images (의료영상 반자동화 영상처리 시스템)

  • 최우영;서명환;유돈식;윤재훈
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.225-228
    • /
    • 2003
  • The purpose of this paper is to develop a semi -automated system for medical image processing with which tissues or organs from medical images can be segmented and classified by people who have basic knowledge of image processing. In addition, the proposed medical image processing system is independent on types of human tissues or images. In this paper, a new semi-automated image processing system with essential image processing functions for medical images is introduced

  • PDF