• Title/Summary/Keyword: Medical Image Compression

Search Result 130, Processing Time 0.021 seconds

Medical Image Compression using Adaptive Subband Threshold

  • Vidhya, K
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.499-507
    • /
    • 2016
  • Medical imaging techniques such as Magnetic Resonance Imaging (MRI), Computed Tomography (CT) and Ultrasound (US) produce a large amount of digital medical images. Hence, compression of digital images becomes essential and is very much desired in medical applications to solve both storage and transmission problems. But at the same time, an efficient image compression scheme that reduces the size of medical images without sacrificing diagnostic information is required. This paper proposes a novel threshold-based medical image compression algorithm to reduce the size of the medical image without degradation in the diagnostic information. This algorithm discusses a novel type of thresholding to maximize Compression Ratio (CR) without sacrificing diagnostic information. The compression algorithm is designed to get image with high optimum compression efficiency and also with high fidelity, especially for Peak Signal to Noise Ratio (PSNR) greater than or equal to 36 dB. This value of PSNR is chosen because it has been suggested by previous researchers that medical images, if have PSNR from 30 dB to 50 dB, will retain diagnostic information. The compression algorithm utilizes one-level wavelet decomposition with threshold-based coefficient selection.

Extended JPEG Progressive Coding for Medical Image Archiving and Communication (확장 JPEG 표준을 이용한 점진식 의료 영상 압축)

  • Ahn, Chang-Beom;Han, Sang-Woo;Kim, Il-Yeon
    • Journal of Biomedical Engineering Research
    • /
    • v.15 no.2
    • /
    • pp.175-182
    • /
    • 1994
  • The international standard for digital compression and coding of continuous-tone still image known as JPEG (Joint Photographic Experts Group) standard is investigated for medical image archiving and communication. The JPEG standard has widely been accepted in the areas of electronic image communication, computer graphics, and multimedia applications, however, due to the lossy character of the JPEG compression its application to the field of medical imaging has been limited. In this paper, the JPEG standard is investigated for medical image compression with a series of head sections of magnetic resonance (MR) images (256 and 4096 graylevels, $256 {\times}256$size). Two types of Huffman codes are employed, i. e., one is optimized to the image statistics to be encoded and the other is a predetermined code, and their coding efficiencies are examined. From experiments, compression ratios of higher than 15 were obtained for the MR images without noticeable distortion. Error signal in the reconstructed images by the JPEG standard appears close to random noise. Compared to existing full-frame bit-allocation technique used for radiological image compression, the JPEG standard achieves higher compression with less Gibb's artifact. Feature of the progressive image build-up of the JPEG progressive coding may be useful in remote diognosis when data is transmitted through slow public communication channel.

  • PDF

An Efficient Medical Image Compression Considering Brain CT Images with Bilateral Symmetry (뇌 CT 영상의 대칭성을 고려한 관심영역 중심의 효율적인 의료영상 압축)

  • Jung, Jae-Sung;Lee, Chang-Hun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.5
    • /
    • pp.39-54
    • /
    • 2012
  • Picture Archiving and Communication System (PACS) has been planted as one of the key infrastructures with an overall improvement in standards of medical informationization and the stream of digital hospitalization in recent days. The kind and data of digital medical imagery are also increasing rapidly in volume. This trend emphasizes the medical image compression for storing large-scale medical image data. Digital Imaging and Communications in Medicine (DICOM), de facto standard in digital medical imagery, specifies Run Length Encode (RLE), which is the typical lossless data compressing technique, for the medical image compression. However, the RLE is not appropriate approach for medical image data with bilateral symmetry of the human organism. we suggest two preprocessing algorithms that detect interested area, the minimum bounding rectangle, in a medical image to enhance data compression efficiency and that re-code image pixel values to reduce data size according to the symmetry characteristics in the interested area, and also presents an improved image compression technique for brain CT imagery with high bilateral symmetry. As the result of experiment, the suggested approach shows higher data compression ratio than the RLE compression in the DICOM standard without detecting interested area in images.

Various Image Compression using Medical Image and Analysis for Compression Ratio (의료영상을 이용한 다양한 압축방법의 구현 및 압축율 비교.분석)

  • 추은형;김현규;박무훈
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.05a
    • /
    • pp.185-188
    • /
    • 2002
  • With improved network system and development of computer technology, a lot of hospitals are equipping PACS that deals with process and transmission of the medical images. Owing to equipment of PACS the problems on transmission and storage of the medical images were treated. The way to solve the problems is to use various image processing techniques and compression methods This paper describes RLC in lossless image compression method, JPEG using DCT in loss image compression applied to medical images as way implementing DICOM standard. Now the medical images were compressed with Wavelet transform method have been taken advantage of image process. And compression rate of each compression methods was analyzed.

  • PDF

Medical Image Compression Using Quincunx Wavelets and SPIHT Coding

  • Beladgham, Mohammed;Bessaid, Abdelhafid;Taleb-Ahmed, Abdelmalik;Boucli Hacene, Ismail
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.264-272
    • /
    • 2012
  • In the field of medical diagnostics, interested parties have resorted increasingly to medical imaging. It is well established that the accuracy and completeness of diagnosis are initially connected with the image quality, but the quality of the image is itself dependent on a number of factors including primarily the processing that an image must undergo to enhance its quality. This paper introduces an algorithm for medical image compression based on the quincunx wavelets coupled with SPIHT coding algorithm, of which we applied the lattice structure to improve the wavelet transform shortcomings. In order to enhance the compression by our algorithm, we have compared the results obtained with those of other methods containing wavelet transforms. For this reason, we evaluated two parameters known for their calculation speed. The first parameter is the PSNR; the second is MSSIM (structural similarity) to measure the quality of compressed image. The results are very satisfactory regarding compression ratio, and the computation time and quality of the compressed image compared to those of traditional methods.

Region-Growing Segmentation Algorithm for Rossless Image Compression to High-Resolution Medical Image (영역 성장 분할 기법을 이용한 무손실 영상 압축)

  • 박정선;김길중;전계록
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.3 no.1
    • /
    • pp.33-40
    • /
    • 2002
  • In this paper, we proposed a lossless compression algorithm of medical images which is essential technique in picture archive and communication system. Mammographic image and magnetic resonance image in among medical images used in this study, proposed a region growing segmentation algorithm for compression of these images. A proposed algorithm was partition by three sub region which error image, discontinuity index map, high order bit data from original image. And generated discontinuity index image data and error image which apply to a region growing algorithm are compressed using JBIG(Joint Bi-level Image experts Group) algorithm that is international hi-level image compression standard and proper image compression technique of gray code digital Images. The proposed lossless compression method resulted in, on the average, lossless compression to about 73.14% with a database of high-resolution digital mammography images. In comparison with direct coding by JBIG, JPEG, and Lempel-Ziv coding methods, the proposed method performed better by 3.7%, 7.9% and 23.6% on the database used.

  • PDF

Compression and Enhancement of Medical Images Using Opposition Based Harmony Search Algorithm

  • Haridoss, Rekha;Punniyakodi, Samundiswary
    • Journal of Information Processing Systems
    • /
    • v.15 no.2
    • /
    • pp.288-304
    • /
    • 2019
  • The growth of telemedicine-based wireless communication for images-magnetic resonance imaging (MRI) and computed tomography (CT)-leads to the necessity of learning the concept of image compression. Over the years, the transform based and spatial based compression techniques have attracted many types of researches and achieve better results at the cost of high computational complexity. In order to overcome this, the optimization techniques are considered with the existing image compression techniques. However, it fails to preserve the original content of the diagnostic information and cause artifacts at high compression ratio. In this paper, the concept of histogram based multilevel thresholding (HMT) using entropy is appended with the optimization algorithm to compress the medical images effectively. However, the method becomes time consuming during the measurement of the randomness from the image pixel group and not suitable for medical applications. Hence, an attempt has been made in this paper to develop an HMT based image compression by utilizing the opposition based improved harmony search algorithm (OIHSA) as an optimization technique along with the entropy. Further, the enhancement of the significant information present in the medical images are improved by the proper selection of entropy and the number of thresholds chosen to reconstruct the compressed image.

Design and Implementation of Medical Image Information System (의료 화상 정보 시스템의 설계 및 구현)

  • 지은미;권용무
    • Journal of Biomedical Engineering Research
    • /
    • v.15 no.2
    • /
    • pp.121-128
    • /
    • 1994
  • In this paper, MIlS (Medical Image Information System) has been designed and implemented using INGRES RDBMS, which is based on a client/server architecture. The implemnted system allows users to register and retrieve patient information, medical images and diagnostic reports. It also provides the function to display these information on workstation windows simultaneously by using the designed menu-driven graphic user interface. The medical image compression! decompression techniques are implemented and integrated into the medical image database system for the efficient data storage and the fast access through the network.

  • PDF

Hybrid Block Coding of Medical Images Using the Characteristics of Human Visual System

  • Park, Kwang-Suk;Chee, Young-Joon
    • Journal of Biomedical Engineering Research
    • /
    • v.15 no.1
    • /
    • pp.57-62
    • /
    • 1994
  • The demand of image compression is increasing now for the integration of medical images into the hospital information system. Even though the quantitative distortion can be measured from the difference between original and reconstructed images, it doesn't include the nonlinear characteristics of human visual system. In this study, we have evaluated the nonlinear characteristics of human visual system and applied them to the compression of medical images. The distortion measures which reflect the characteristics of human visual system has been considered. This image compression procedure consists of coding scheme using JND (Just Noticeable Difference) curve, polynomial approximation and BTC (Block Truncation Coding). Results show that this method can be applied to CT images, scanned film images and other kinds of medical images with the compression ratio of 5-10:1 without any noticeable distortion.

  • PDF

Adaptive Medical Image Compression Based on Lossy and Lossless Embedded Zerotree Methods

  • Elhannachi, Sid Ahmed;Benamrane, Nacera;Abdelmalik, Taleb-Ahmed
    • Journal of Information Processing Systems
    • /
    • v.13 no.1
    • /
    • pp.40-56
    • /
    • 2017
  • Since the progress of digital medical imaging techniques, it has been needed to compress the variety of medical images. In medical imaging, reversible compression of image's region of interest (ROI) which is diagnostically relevant is considered essential. Then, improving the global compression rate of the image can also be obtained by separately coding the ROI part and the remaining image (called background). For this purpose, the present work proposes an efficient reversible discrete cosine transform (RDCT) based embedded image coder designed for lossless ROI coding in very high compression ratio. Motivated by the wavelet structure of DCT, the proposed rearranged structure is well coupled with a lossless embedded zerotree wavelet coder (LEZW), while the background is highly compressed using the set partitioning in hierarchical trees (SPIHT) technique. Results coding shows that the performance of the proposed new coder is much superior to that of various state-of-art still image compression methods.