• 제목/요약/키워드: Medical Deep-learning

검색결과 381건 처리시간 0.02초

Ensemble UNet 3+ for Medical Image Segmentation

  • JongJin, Park
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제15권1호
    • /
    • pp.269-274
    • /
    • 2023
  • In this paper, we proposed a new UNet 3+ model for medical image segmentation. The proposed ensemble(E) UNet 3+ model consists of UNet 3+s of varying depths into one unified architecture. UNet 3+s of varying depths have same encoder, but have their own decoders. They can bridge semantic gap between encoder and decoder nodes of UNet 3+. Deep supervision was used for learning on a total of 8 nodes of the E-UNet 3+ to improve performance. The proposed E-UNet 3+ model shows better segmentation results than those of the UNet 3+. As a result of the simulation, the E-UNet 3+ model using deep supervision was the best with loss function values of 0.8904 and 0.8562 for training and validation data. For the test data, the UNet 3+ model using deep supervision was the best with a value of 0.7406. Qualitative comparison of the simulation results shows the results of the proposed model are better than those of existing UNet 3+.

CT 이미지 세그멘테이션을 위한 3D 의료 영상 데이터 증강 기법 (3D Medical Image Data Augmentation for CT Image Segmentation)

  • 고성현;양희규;김문성;추현승
    • 인터넷정보학회논문지
    • /
    • 제24권4호
    • /
    • pp.85-92
    • /
    • 2023
  • X-ray, Computed Tomography (CT), Magnetic Resonance Imaging (MRI)과 같은 의료데이터에서 딥러닝을 활용해 질병 유무 판별 태스크와 같은 문제를 해결하려는 시도가 활발하다. 대부분의 데이터 기반 딥러닝 문제들은 높은 정확도 달성과 정답과 비교하는 성능평가의 활용을 위해 지도학습기법을 사용해야 한다. 지도학습에는 다량의 이미지와 레이블 세트가 필요하지만, 학습에 충분한 양의 의료 이미지 데이터를 얻기는 어렵다. 다양한 데이터 증강 기법을 통해 적은 양의 의료이미지와 레이블 세트로 지도학습 기반 모델의 과소적합 문제를 극복할 수 있다. 본 연구는 딥러닝 기반 갈비뼈 골절 세그멘테이션 모델의 성능 향상과 효과적인 좌우 반전, 회전, 스케일링 등의 데이터 증강 기법을 탐색한다. 좌우 반전과 30° 회전, 60° 회전으로 증강한 데이터셋은 모델 성능 향상에 기여하지만, 90° 회전 및 ⨯0.5 스케일링은 모델 성능을 저하한다. 이는 데이터셋 및 태스크에 따라 적절한 데이터 증강 기법의 사용이 필요함을 나타낸다.

학습률 적용에 따른 흉부영상 폐렴 유무 분류 비교평가 (Comparative Evaluation of Chest Image Pneumonia based on Learning Rate Application)

  • 김지율;예수영
    • 한국방사선학회논문지
    • /
    • 제16권5호
    • /
    • pp.595-602
    • /
    • 2022
  • 본 연구는 딥러닝을 이용한 흉부 X선 폐렴 영상에 대하여 정확하고 효율적인 의료영상의 자동진단을 위해서 가장 효율적인 학습률을 제시하고자 하였다. Inception V3 딥러닝 모델에 학습률을 0.1, 0.01, 0.001, 0.0001로 각각 설정한 후 3회 딥러닝 모델링을 수행하였다. 그리고 검증 모델링의 평균 정확도 및 손실 함수 값, Test 모델링의 Metric을 성능평가 지표로 설정하여 딥러닝 모델링의 수행 결과로 획득한 결과값의 3회 평균값으로 성능을 비교 평가하였다. 딥러닝 검증 모델링 성능평가 및 Test 모델링 Metric에 대한 성능평가의 결과, 학습률 0.001을 적용한 모델링이 가장 높은 정확도와 우수한 성능을 나타내었다. 이러한 이유로 본 논문에서는 딥러닝 모델을 이용한 흉부 X선 영상에 대한 폐렴 유무 분류 시 학습률을 0.001로 적용할 것을 권고한다. 그리고 본 논문에서 제시하는 학습률의 적용을 통한 딥러닝 모델링 시 흉부 X선 영상에 대한 폐렴 유무 분류에 대한 인력의 보조적인 역할을 수행할 수 있을 거라고 판단하였다. 향후 딥러닝을 이용한 폐렴 유무 진단 분류 연구가 계속해서 진행될 시, 본 논문의 논문 연구 내용은 기초자료로 활용될 수 있다고 여겨지며 나아가 인공지능을 활용한 의료영상 분류에 있어 효율적인 학습률 선택에 도움이 될 것으로 기대된다.

Diagnostic Performance of a New Convolutional Neural Network Algorithm for Detecting Developmental Dysplasia of the Hip on Anteroposterior Radiographs

  • Hyoung Suk Park;Kiwan Jeon;Yeon Jin Cho;Se Woo Kim;Seul Bi Lee;Gayoung Choi;Seunghyun Lee;Young Hun Choi;Jung-Eun Cheon;Woo Sun Kim;Young Jin Ryu;Jae-Yeon Hwang
    • Korean Journal of Radiology
    • /
    • 제22권4호
    • /
    • pp.612-623
    • /
    • 2021
  • Objective: To evaluate the diagnostic performance of a deep learning algorithm for the automated detection of developmental dysplasia of the hip (DDH) on anteroposterior (AP) radiographs. Materials and Methods: Of 2601 hip AP radiographs, 5076 cropped unilateral hip joint images were used to construct a dataset that was further divided into training (80%), validation (10%), or test sets (10%). Three radiologists were asked to label the hip images as normal or DDH. To investigate the diagnostic performance of the deep learning algorithm, we calculated the receiver operating characteristics (ROC), precision-recall curve (PRC) plots, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) and compared them with the performance of radiologists with different levels of experience. Results: The area under the ROC plot generated by the deep learning algorithm and radiologists was 0.988 and 0.988-0.919, respectively. The area under the PRC plot generated by the deep learning algorithm and radiologists was 0.973 and 0.618-0.958, respectively. The sensitivity, specificity, PPV, and NPV of the proposed deep learning algorithm were 98.0, 98.1, 84.5, and 99.8%, respectively. There was no significant difference in the diagnosis of DDH by the algorithm and the radiologist with experience in pediatric radiology (p = 0.180). However, the proposed model showed higher sensitivity, specificity, and PPV, compared to the radiologist without experience in pediatric radiology (p < 0.001). Conclusion: The proposed deep learning algorithm provided an accurate diagnosis of DDH on hip radiographs, which was comparable to the diagnosis by an experienced radiologist.

Deep Learning-Based Inverse Design for Engineering Systems: A Study on Supervised and Unsupervised Learning Models

  • Seong-Sin Kim
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제16권2호
    • /
    • pp.127-135
    • /
    • 2024
  • Recent studies have shown that inverse design using deep learning has the potential to rapidly generate the optimal design that satisfies the target performance without the need for iterative optimization processes. Unlike traditional methods, deep learning allows the network to rapidly generate a large number of solution candidates for the same objective after a single training, and enables the generation of diverse designs tailored to the objectives of inverse design. These inverse design techniques are expected to significantly enhance the efficiency and innovation of design processes in various fields such as aerospace, biology, medical, and engineering. We analyzes inverse design models that are mainly utilized in the nano and chemical fields, and proposes inverse design models based on supervised and unsupervised learning that can be applied to the engineering system. It is expected to present the possibility of effectively applying inverse design methodologies to the design optimization problem in the field of engineering according to each specific objective.

Classification of Mouse Lung Metastatic Tumor with Deep Learning

  • Lee, Ha Neul;Seo, Hong-Deok;Kim, Eui-Myoung;Han, Beom Seok;Kang, Jin Seok
    • Biomolecules & Therapeutics
    • /
    • 제30권2호
    • /
    • pp.179-183
    • /
    • 2022
  • Traditionally, pathologists microscopically examine tissue sections to detect pathological lesions; the many slides that must be evaluated impose severe work burdens. Also, diagnostic accuracy varies by pathologist training and experience; better diagnostic tools are required. Given the rapid development of computer vision, automated deep learning is now used to classify microscopic images, including medical images. Here, we used a Inception-v3 deep learning model to detect mouse lung metastatic tumors via whole slide imaging (WSI); we cropped the images to 151 by 151 pixels. The images were divided into training (53.8%) and test (46.2%) sets (21,017 and 18,016 images, respectively). When images from lung tissue containing tumor tissues were evaluated, the model accuracy was 98.76%. When images from normal lung tissue were evaluated, the model accuracy ("no tumor") was 99.87%. Thus, the deep learning model distinguished metastatic lesions from normal lung tissue. Our approach will allow the rapid and accurate analysis of various tissues.

Evaluation of Similarity Analysis of Newspaper Article Using Natural Language Processing

  • Ayako Ohshiro;Takeo Okazaki;Takashi Kano;Shinichiro Ueda
    • International Journal of Computer Science & Network Security
    • /
    • 제24권6호
    • /
    • pp.1-7
    • /
    • 2024
  • Comparing text features involves evaluating the "similarity" between texts. It is crucial to use appropriate similarity measures when comparing similarities. This study utilized various techniques to assess the similarities between newspaper articles, including deep learning and a previously proposed method: a combination of Pointwise Mutual Information (PMI) and Word Pair Matching (WPM), denoted as PMI+WPM. For performance comparison, law data from medical research in Japan were utilized as validation data in evaluating the PMI+WPM method. The distribution of similarities in text data varies depending on the evaluation technique and genre, as revealed by the comparative analysis. For newspaper data, non-deep learning methods demonstrated better similarity evaluation accuracy than deep learning methods. Additionally, evaluating similarities in law data is more challenging than in newspaper articles. Despite deep learning being the prevalent method for evaluating textual similarities, this study demonstrates that non-deep learning methods can be effective regarding Japanese-based texts.

의학전문대학원생의 학습동아리 참여 경험에 대한 성찰 에세이 분석 (Analysis of Reflective Essays on the Learning Community Experiences of Medical Students)

  • 윤소정;박귀화
    • 의학교육논단
    • /
    • 제18권3호
    • /
    • pp.167-173
    • /
    • 2016
  • This study analyzed participation experiences in a voluntarily learning community using both quantitative and qualitative methods. Sixty freshmen and sophomore medical school students in 10 learning communities participated in the study. At the time of the survey, learning communities had been operating for 10 weeks and had weekly in-person meetings. Satisfaction questionnaires and reflective essays were given and analyzed. The results showed that learning community experiences were effective in promoting students' learning motivation, cooperative learning, responsibility, and communication skills. Three essential topics and nine subjects were analyzed in the reflective essays. Three essential topics were conflict with each other due to the difference, forming deep relationships, and sharing and learning together with an in-depth study. The results of this study will contribute to collaborative learning culture and the development of learning communities in medical schools.

Artificial Intelligence based Tumor detection System using Computational Pathology

  • Naeem, Tayyaba;Qamar, Shamweel;Park, Peom
    • 시스템엔지니어링학술지
    • /
    • 제15권2호
    • /
    • pp.72-78
    • /
    • 2019
  • Pathology is the motor that drives healthcare to understand diseases. The way pathologists diagnose diseases, which involves manual observation of images under a microscope has been used for the last 150 years, it's time to change. This paper is specifically based on tumor detection using deep learning techniques. Pathologist examine the specimen slides from the specific portion of body (e-g liver, breast, prostate region) and then examine it under the microscope to identify the effected cells among all the normal cells. This process is time consuming and not sufficiently accurate. So, there is a need of a system that can detect tumor automatically in less time. Solution to this problem is computational pathology: an approach to examine tissue data obtained through whole slide imaging using modern image analysis algorithms and to analyze clinically relevant information from these data. Artificial Intelligence models like machine learning and deep learning are used at the molecular levels to generate diagnostic inferences and predictions; and presents this clinically actionable knowledge to pathologist through dynamic and integrated reports. Which enables physicians, laboratory personnel, and other health care system to make the best possible medical decisions. I will discuss the techniques for the automated tumor detection system within the new discipline of computational pathology, which will be useful for the future practice of pathology and, more broadly, medical practice in general.

의료 영상 바이오마커 추출을 위한 딥러닝 손실함수 성능 비교 (Comparison of Deep Learning Loss Function Performance for Medical Video Biomarker Extraction)

  • 서진범;조영복
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 춘계학술대회
    • /
    • pp.72-74
    • /
    • 2021
  • 다양한 분야에서 현재 활용되고 있는 딥러닝 과정은 데이터 준비, 데이터 전처리, 모델 생성, 모델 학습, 모델 평가로 구성 된다. 이중 모델 학습 과정에서 손실함수는 모델이 학습하면서 출력한 값을 실제 값과 비교하여 그 차이를 출력하게 되고, 출력된 손실값을 기반으로 모델은 역전파 알고리즘을 통해 손실값이 감소하는 방향으로 가중치를 수정해가며 학습을 진행한다. 본 논문에서는 바이오마커 추출을 위한 딥러닝 모델에서 사용될 신경망 출력 값의 손실도를 측정하여 출력해주는 다양한 손실함수를 분석하고 실험을 통해 최적의 손실함수를 찾아내고자 한다.

  • PDF