• Title/Summary/Keyword: Medical Data Mining

Search Result 202, Processing Time 0.027 seconds

Developing the administrative model using the data mining technique for injury in National Health Insurance (데이터마이닝 기법을 활용한 국민건강보험 상해상병 관리모형 개발)

  • Park, Il-Su;Han, Jun-Tae;Sohn, Hae-Sook;Kang, Suk-Bok
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.3
    • /
    • pp.467-476
    • /
    • 2011
  • We developed the hybrid model coupled with predictive model and business rule model for administration of injury by utilizing medical data of the National Health Insurance in Korea. We performed decision tree analysis using data mining methodology and used SAS Enterprise Miner 4.1. We also investigated under several business rule for benefits (expense paid by insurer) and claims of injury in National Health Insurance Corporation. We can see that the proposed hybrid model provides a quite efficient plausible results.

An Intelligent Agent System using Multi-View Information Fusion (다각도 정보융합 방법을 이용한 지능형 에이전트 시스템)

  • Rhee, Hyun-Sook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.12
    • /
    • pp.11-19
    • /
    • 2014
  • In this paper, we design an intelligent agent system with the data mining module and information fusion module as the core components of the system and investigate the possibility for the medical expert system. In the data mining module, fuzzy neural network, OFUN-NET analyzes multi-view data and produces fuzzy cluster knowledge base. In the information fusion module and application module, they serve the diagnosis result with possibility degree and useful information for diagnosis, such as uncertainty decision status or detection of asymmetry. We also present the experiment results on the BI-RADS-based feature data set selected form DDSM benchmark database. They show higher classification accuracy than conventional methods and the feasibility of the system as a computer aided diagnosis system.

Analysis of Unstructured Data on Detecting of New Drug Indication of Atorvastatin (아토바스타틴의 새로운 약물 적응증 탐색을 위한 비정형 데이터 분석)

  • Jeong, Hwee-Soo;Kang, Gil-Won;Choi, Woong;Park, Jong-Hyock;Shin, Kwang-Soo;Suh, Young-Sung
    • Journal of health informatics and statistics
    • /
    • v.43 no.4
    • /
    • pp.329-335
    • /
    • 2018
  • Objectives: In recent years, there has been an increased need for a way to extract desired information from multiple medical literatures at once. This study was conducted to confirm the usefulness of unstructured data analysis using previously published medical literatures to search for new indications. Methods: The new indications were searched through text mining, network analysis, and topic modeling analysis using 5,057 articles of atorvastatin, a treatment for hyperlipidemia, from 1990 to 2017. Results: The extracted keywords was 273. In the frequency of text mining and network analysis, the existing indications of atorvastatin were extracted in top level. The novel indications by Term Frequency-Inverse Document Frequency (TF-IDF) were atrial fibrillation, heart failure, breast cancer, rheumatoid arthritis, combined hyperlipidemia, arrhythmias, multiple sclerosis, non-alcoholic fatty liver disease, contrast-induced acute kidney injury and prostate cancer. Conclusions: Unstructured data analysis for discovering new indications from massive medical literature is expected to be used in drug repositioning industries.

Recommendation of Optimal Treatment Method for Heart Disease using EM Clustering Technique

  • Jung, Yong Gyu;Kim, Hee Wan
    • International Journal of Advanced Culture Technology
    • /
    • v.5 no.3
    • /
    • pp.40-45
    • /
    • 2017
  • This data mining technique was used to extract useful information from percutaneous coronary intervention data obtained from the US public data homepage. The experiment was performed by extracting data on the area, frequency of operation, and the number of deaths. It led us to finding of meaningful correlations, patterns, and trends using various algorithms, pattern techniques, and statistical techniques. In this paper, information is obtained through efficient decision tree and cluster analysis in predicting the incidence of percutaneous coronary intervention and mortality. In the cluster analysis, EM algorithm was used to evaluate the suitability of the algorithm for each situation based on performance tests and verification of results. In the cluster analysis, the experimental data were classified using the EM algorithm, and we evaluated which models are more effective in comparing functions. Using data mining technique, it was identified which areas had effective treatment techniques and which areas were vulnerable, and we can predict the frequency and mortality of percutaneous coronary intervention for heart disease.

Analysis of Healthcare Quality Indicators using Data Mining and Development of a Decision Support System (데이터마이닝을 이용한 의료의 질 측정지표 분석 및 의사결정지원시스템 개발)

  • Kim, Hye Sook;Chae, Young-Moon;Tark, Kwan-Chul;Park, Hyun-Ju;Ho, Seung-Hee
    • Quality Improvement in Health Care
    • /
    • v.8 no.2
    • /
    • pp.186-207
    • /
    • 2001
  • Background : This study presented an analysis of healthcare quality indicators using data mining and a development of decision support system for quality improvement. Method : Specifically, important factors influencing the key quality indicators were identified using a decision tree method for data mining based on 8,405 patients who discharged from a medical center during the period between December 1, 2000 and January 31, 2001. In addition, a decision support system was developed to analyze and monitor trends of these quality indicators using a Visual Basic 6.0. Guidelines and tutorial for quality improvement activities were also included in the system. Result : Among 12 selected quality indicators, decision tree analysis was performed for 3 indicators ; unscheduled readmission due to the same or related condition, unscheduled return to intensive care unit, and inpatient mortality which have a volume bigger than 100 cases during the period. The optimum range of target group in healthcare quality indicators were identified from the gain chart. Important influencing factors for these 3 indicators were: diagnosis, attribute of the disease, and age of the patient in unscheduled returns to ICU group ; and length of stay, diagnosis, and belonging department in inpatient mortality group. Conclusion : We developed a decision support system through analysis of healthcare quality indicators and data mining technique which can be effectively implemented for utilization review and quality management in a healthcare organization. In the future, further number of quality indicators should be developed to effectively support a hospital-wide Continuous Quality Improvement activity. Through these endevours, a decision support system can be developed and the newly developed decision support system should be well integrated with the hospital Order Communication System to support concurrent review, utilization review, quality and risk management.

  • PDF

Text-Mining of Online Discourse to Characterize the Nature of Pain in Low Back Pain

  • Ryu, Young Uk
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.14 no.3
    • /
    • pp.55-62
    • /
    • 2019
  • PURPOSE: Text-mining has been shown to be useful for understanding the clinical characteristics and patients' concerns regarding a specific disease. Low back pain (LBP) is the most common disease in modern society and has a wide variety of causes and symptoms. On the other hand, it is difficult to understand the clinical characteristics and the needs as well as demands of patients with LBP because of the various clinical characteristics. This study examined online texts on LBP to determine of text-mining can help better understand general characteristics of LBP and its specific elements. METHODS: Online data from www.spine-health.com were used for text-mining. Keyword frequency analysis was performed first on the complete text of postings (full-text analysis). Only the sentences containing the highest frequency word, pain, were selected. Next, texts including the sentences were used to re-analyze the keyword frequency (pain-text analysis). RESULTS: Keyword frequency analysis showed that pain is of utmost concern. Full-text analysis was dominated by structural, pathological, and therapeutic words, whereas pain-text analysis was related mainly to the location and quality of the pain. CONCLUSION: The present study indicated that text-mining for a specific element (keyword) of a particular disease could enhance the understanding of the specific aspect of the disease. This suggests that a consideration of the text source is required when interpreting the results. Clinically, the present results suggest that clinicians pay more attention to the pain a patient is experiencing, and provide information based on medical knowledge.

A Study on the Characteristics of Prematurely Discharged Patients and the Model for Predicting Premature Discharge (환자이탈군 특성요인과 이탈환자 예측모형에 관한 연구)

  • Min, Kyung-Jin;Song, Kyu-Moon;Kim, Kwang-Hwan
    • Quality Improvement in Health Care
    • /
    • v.9 no.1
    • /
    • pp.18-32
    • /
    • 2002
  • Background : We developed a model for predicting premature discharge and identifying related factors. Methods : Prediction model was developed by data mining techniques. Basic data were collected from the total discharge data base of a university hospital in Chungnam Province during the period from July 1, 1999 to June 30, 2000. Results : 1. Among 22,873 patients, the number of patients discharged with usual discharge orders were 21,695 or 94.8%. The number of the prematurely discharged patients were 1,178 or 5.2%. 2. The primary reason for unusual discharge was transfer to other hospital. Move to a local hospital closer to their home and burdensome medical expenses were main reasons. 3. Predictability of each model was tested using the top 10 percent of patients with the highest probabilities of premature discharge. The neural network model was chosen as the most appropriate model for predicting prematurely discharged patients. 4. Ten percent of the total number of patients had been selected randomly to test the effectiveness of the neural network model. We have chosen the threshold of the neural network model as 0.7. The number of patients who were expected to discharge prematurely was 312. Among them, 241 had been discharged prematurely (77.2%). Conclusion : Of the several data mining techniques used, the neural network model was the most effective, It can be used to identify and manage the patients who are expected to discharge prematurely.

  • PDF

Technology Convergence & Trend Analysis of Biohealth Industry in 5 Countries : Using patent co-classification analysis and text mining (5개국 바이오헬스 산업의 기술융합과 트렌드 분석 : 특허 동시분류분석과 텍스트마이닝을 활용하여)

  • Park, Soo-Hyun;Yun, Young-Mi;Kim, Ho-Yong;Kim, Jae-Soo
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.4
    • /
    • pp.9-21
    • /
    • 2021
  • The study aims to identify convergence and trends in technology-based patent data for the biohealth sector in IP5 countries (KR, EP, JP, US, CN) and present the direction of development in that industry. We used patent co-classification analysis-based network analysis and TF-IDF-based text mining as the principal methodology to understand the current state of technology convergence. As a result, the technology convergence cluster in the biohealth industry was derived in three forms: (A) Medical device for treatment, (B) Medical data processing, and (C) Medical device for biometrics. Besides, as a result of trend analysis based on technology convergence results, it is analyzed that Korea is likely to dominate the market with patents with high commercial value in the future as it is derived as a market leader in (B) medical data processing. In particular, the field is expected to require technology convergence activation policies and R&D support strategies for the technology as the possibility of medical data utilization by domestic bio-health companies expands, along with the policy conversion of the "Data 3 Act" passed by the National Assembly in January 2019.

Informally Patients Prediction Model of Admission Patients (입원환자 데이터를 이용한 예약부도환자 이탈방지 모형 연구)

  • Kim, Eun-Yeob;Ham, Sung-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.11
    • /
    • pp.3465-3472
    • /
    • 2009
  • The aims of this study is to medical record data warehouse which had been collected from hospital information systems. continuous patient 2,118 60.5%, informally patient 1,385 39.5%. In using survival factors sex, age, area, insurance, admission-course, medical treatment, out-patient lesson, out-patient form, conference diagnosis, operation, cancer, medical reservation. As a result of making a predictive modeling using the logistic regression, the fitness of the predictive modeling of informally patient was 66.0% and neural network, the predictive was 66.72% and CHAID, the predictive was 63.25%, which is a data mining. The expected modeling of the informally patients, the hospital through the continuous patient management and trust of hospital.

Health Examination Data Based Medical Treatment Prediction by Using SVM (SVM을 이용한 건강검진정보 기반 진료과목 예측)

  • Piao, Minghao;Byun, Jeong-Yong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.6
    • /
    • pp.303-308
    • /
    • 2017
  • Nowadays, living standard is improved and people have high interest to the personal health care problem. Accordingly, people desire to know the personal physical condition and the related medical treatment. Thus, there is the necessary of the personalized medical treatment, and there are many studies about the automatic disease diagnosis and the related services. Those studies focus on the particular disease prediction which is based on the related particular data. However, there is no studies about the medical treatment prediction. In our study, national health data based medical treatment predictor is built by using SVM, and the performance is evaluated by comparing with other prediction methods. The experimental results show that the health data based medical treatment prediction resulted in the average accuracy of 80%, and the SVM performs better than other prediction algorithms.