• Title/Summary/Keyword: Medical 3D printing

Search Result 127, Processing Time 0.033 seconds

3D-printed Face Shields for Healthcare Professionals Battling COVID-19 Pandemic

  • Kim, Gyeong-Man;Assefa, Dawit;Kang, Joon Wun;Gebreyouhannes, Esayas
    • Journal of Appropriate Technology
    • /
    • v.6 no.2
    • /
    • pp.226-237
    • /
    • 2020
  • As the number of reported COVID-19 cases rises around the world, regions affected by the virus are taking serious measures to contain its spread. Face shields are one of the highest-need personal protective equipment (PPE) during COVID-19 pandemic. Beyond traditional face masks, as known cases of the coronavirus soar, currently there is a significant shortage of face shields around the world. In response, the protective face shields were designed and fabricated with open-source 3D modelling software and 3D printing technology, respectively. Our face shield consisted of two parts only; a reusable 3D printed headband and a visor made of transparent plastic sheet, as barrier. The resulting 3D printed face shields are affordable, lightweight, one-size-fits-most and ready-to-wear with minimal assemblies, and go on easily over glass, goggle and face mask. To ensure being donated to the healthcare professionals without risk infected by any pathogens, the 3D printed face shields were successfully be disinfected with ultraviolet germicidal irradiation (UVGI dosage of 1000 mJ/cm2) and 70% alcohol. For routine disinfection a UVGI chamber was designed and optimized to provide uniform UV-C illumination with an appreciated fluence for complete decontamination. More than 1,000 face shields were produced already and donated to the special hospitals for COVID-19 patients, quarantines, government and medical agencies in Ethiopia as well as in East-African countries. With certainty, our intention goes beyond the hospitals and other first responders, but not limited for all those who have to stay in the service or be in contact with many other people in the time of COVID-19 pandemic.

Evaluation of Shielding Performance of 3D Printer Materials for High-energy Electron Radiation Therapy (고 에너지 전자선 치료를 위한 3D 프린터 물질의 차폐 성능평가)

  • Chang-Woo, Oh;Sang-Il, Bae;Young-Min, Moon;Hyun-Kyoung, Yang
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.6
    • /
    • pp.687-695
    • /
    • 2022
  • To find a 3D printer material that can replace lead used as a shield for high-energy electron beam treatment, the shielding composites were simulated by using MCNP6 programs. The Percent Depth Dose (PDD), Flatness, and Symmetry of linear accelerators emitting high-energy electron beams were measured, and the linear accelerator was compared with MCNP6 after simulation, confirming that the source term between the actual measurement and simulation was consistent. By simulating the lead shield, the appropriate thickness of the lead shield capable of shielding 95% or more of the absorbed dose was selected. Based on the absorption dose data for lead shield with a thickness of 3 mm, the shielding performance was analyzed by simulating 1, 5, 10, and 15 mm thicknesses of ABS+W (10%), ABS+Bi (10%), and PLA+Fe (10%). Each prototype was manufactured with a 3D printer, measured and analyzed under the same conditions as in the simulation, and found that when ABS+W (10%) material was formed to have a thickness of at least 10mm, it had a shielding performance that could replace lead with a thickness of 3mm. The surface morphology and atomic composition of the ABS+W (10%) material were evaluated using a scanning electron microscope (SEM) and an energy dispersive X-ray spectrometer (EDS). From these results, it was confirmed that replacing the commercialized lead shield with ABS+W (10%) material not only produces a shielding effect such as lead, but also can be customized to patients using a 3D printer, which can be very useful for high-energy electron beam treatment.

A Study on the Analysis of Radiation Dose for Thermoplastic Material and 3D Print Filament Materials (열가소성 플라스틱 재질과 3D 프린트 필라멘트 재질에 대한 방사선량 분석에 관한 연구)

  • Lee, Dong-Yeon
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.2
    • /
    • pp.181-189
    • /
    • 2021
  • This study is a prior research to manufacture a thermoplastic mask, which is a fixture used in radiation therapy, by 3D printing. It proceeded to analyze the filament material that can replace the thermoplastic. Among the commercially available filament materials, a material having similar characteristics to that of a thermoplastic mask was selected and the radiation dose was compared and analyzed. The experiment used Monte Carlo simulation. The shape in which the mask fixed the head was simulated for the ICRU sphere. The photon fluence was calculated at the skin Hp (0.07), the lens Hp (3), and the whole body Hp (10) by applying a thermoplastic plastic material and a filament material. As a result, when looking at the relative dose based on the thermoplastic plastic material, the difference was approximated within 4%. The material showing the most similar dose was PA-nylon. In selecting an appropriate filament material, it should be selected by comprehensively considering various conditions such as economical efficiency and radiation effects. It is thought that the results of this study can be used as basic data.

The Development of Medical Device for Strengthening the Intervertebral Disc (추간판 강화용 의료기 개발)

  • Ryu, Suchak;Kim, Seunghyeon;Jo, Sungkwang;Shim, Keonoh
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.35 no.1
    • /
    • pp.20-26
    • /
    • 2022
  • This paper was designed to prevent intervertebral disc escape and treatment. we produced downsized lumbar traction bed at home and automated system depending on weight and muscle mass by using 3D print and Arduino to confirm the possibility of prototyping. Hence, we checked muscle mass 10 males in their 20s with different exercise conditions, and it shows that average muscle mass of group who exercised was 56.63kg, and non-exercise group was 50.8 kg. this is shows lumbar repetitive exercise can show the traction therapy effect can be seen traction therapy effect. In addition, we installed wooden doll substitute people with spring and test changing of length. Traction bed has the steps ranging from 1 to 4, in which the motor with torque and rpm, ranging from 4.7 to 5.5 kgf and from 4.5 to 5.3 rpm, respectively. The motor controlled with the voltage of Arduino was operated for the length of the spine to be stretched to 4-5 mm. As increasing the weight of the wooden doll by 10g, it was confirmed that the spring increased by 4-5 mm from the first step to the fourth step.

MicroSUCI: A Microsurgical Background That Incorporates Suction Under Continuous Irrigation

  • Theodora Papavasiliou;Stelios Chatzimichail;Ankur Khajuria;Joon-Pio Hong
    • Archives of Plastic Surgery
    • /
    • v.50 no.1
    • /
    • pp.96-100
    • /
    • 2023
  • The microsurgical anastomosis is integral to the success of autologous-free tissue transfer. Successful performance of this procedure relies strongly on operator dexterity, which can be made more challenging when blood and edematous fluids obscure the field of view. Workflow is impeded by intermittent irrigation and suctioning, necessitating presence of an assistant, with risk of arterial thrombosis, from vessels being drawn into suction drains. To negate these current disadvantages and minimize the barrier of entry to microvascular operations, we designed, manufactured, and patented a novel three-dimensional printed microsurgical background device with microfluidic capabilities that allow continuous suction and irrigation as well as provide platforms that enable multiangle retraction to facilitate operator autonomy. This was validated in an ex vivo model, with the device found to be superior to the current standard. We believe that this will have major applicability to the improvement of microsurgeon

Development of a Management System for Image and Personal Information for the Development of a Standard Brain for Diverse Koreans (다양한 한국인의 표준뇌를 개발하기 위한 영상 및 개인정보 관리 시스템의 개발)

  • 정순철;최도영;이정미;박현욱;손진훈
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.1
    • /
    • pp.77-82
    • /
    • 2004
  • The purpose of this study is to establish a reference for image acquisition for completion of a standard brain for diverse Korean population, and to develop a management system that saves and manage database of the acquired brain image and personal information of those who were tested. 3D MP-RAGE technique, which has excellent SNR and CNR and reduces the times for image acquisition, was selected for anatomical Image acquisition, and parameter values were obtained for the optimal image acquisition. The database management system was devised to obtain not only anatomical image data but also subjects' basic demographic factors, medical history, handedness inventory state-trait anxiety inventory, A-type personality inventory, self-assessment depression inventory questionnaires of Sasang Constitution Mini-Mental State Examination, intelligence test, and personality test via a survey questionnaire and to save and manage the results of the tests. In addition, this system was designed to have functions of saving, inserting, deleting, searching, and Printing of image da a and personal information of subjects, and to have accessibility to them as well as automatic connection setup with ODBC. This newly developed system may have major contribution to the completion of a standard brain of diverse Korean population in that it can save and manage their image date and personal information.

A Study on Elbow Phantom Production and Usability Evaluation by Adjusting Infill Density using 3D Printing (3D 프린팅을 사용한 Infill 조절에 따른 Elbow 팬텀 제작 및 유용성 평가에 관한 연구)

  • Myung-In Kim;Seung-Ho Ji;Hyun-Seop Wi;Dae-Won Lee;Hui-Min Jang;Myeong-Seong Yun;Dong-Kyoon Han
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.6
    • /
    • pp.929-937
    • /
    • 2023
  • Human equivalent phantoms manufactured using 3D printers are cheaper and can be manufactured in a short time than conventional human phantoms. However, many phantoms are manufactured with less than 100 % of Infill Density, one of the 3D printer output setting variables. Therefore, this study compared the Bone Phantom CT number, which differs from the ratio of five Infill Density produced using a 3D printer, to the CT number of the actual human body Bone. In addition, the usefulness of the manufactured phantom was evaluated by producing a 100 % elbow joint phantom with Infill Density and setting the Infill Density to 100 % through CT number comparison for each tissue on computed tomography (CT). As a result, the Bone Phantom printed with 100 % Infill Density did not show the most statistically significant difference from the CT number value of the actual human Bone, and the CT number of each tissue did not show a statistically significant difference from the CT number value of each tissue of the actual human elbow joint.

Identification and Optimization of Dominant Process Parameters Affecting Mechanical Properties of FDM 3D Printed Parts (압출적층조형 공정 기반 3D 프린팅 제품 기계적 특성의 지배적 공정인자 도출 및 최적화에 관한 연구)

  • Kim, Jung Sub;Jo, Nanhyeon;Nam, Jung Soo;Lee, Sang Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.7
    • /
    • pp.607-612
    • /
    • 2017
  • Recently, additive manufacturing (AM) technology, also known as 3D printing technology, has attracted attention as an innovative production method to fabricate functional components having complex shapes with saving materials. In particular, a fabrication of poly lactic acid (PLA) parts through a fused deposition modeling (FDM) technique has attracted much attention in the medical field. In this paper, an experimental study on the identification of dominant process parameters influencing mechanical properties of PLA parts fabricated by the FDM process is conducted, and their optimal values for maximizing the mechanical properties are obtained. Three process parameters are considered in this research, namely, layer thickness, a part orientation and in-fill. It is known that thin layer thickness, part orientation diagonal to the tension direction, and full in-fill are optimal conditions to maximize the mechanical properties.

Privacy-preserving Customized Order Service Protocol based on Smart Contract in Smart Factory (프라이버시를 제공하는 스마트 컨트랙트 기반의 스마트 팩토리 주문제작 프로토콜)

  • Lee, YongJoo;Woo, Sung-Hee;Lee, Sang-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.2
    • /
    • pp.215-222
    • /
    • 2019
  • Advances in technologies about 3D (three-dimensional) printing and smart factory related issues will have the effect of reducing the cost of building a smart factory and making various types of service available. Manufacturers and service providers of small assets work with outside experts to provide small amounts of customized ordering services. If customers have to disclose their private information to subscribe to a new service, they may be reluctant to use it and the availability of developed technology may cause slow progress. We propose a new protocol for customized order service for smart factory. The proposed approach is designed to meet requirements of security and based on smart contract in IoT convergence network. We analyzed the requirements of the proposed approach which provided anonymity, privacy, fairness, and non-repudiation. We compared it with closely related studies to show originality and differences.

Analysis of the Perception of Radiological Technology University Students about the Latest Technology in the Era of the 4th Industrial Revolution (4차 산업혁명시대 최신 기술에 대한 방사선과 대학생의 인식도)

  • Jang, Hyon-Chol
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.3
    • /
    • pp.225-231
    • /
    • 2022
  • Transcendence of space and time, virtual reality, augmented reality, etc. are being realized through the latest technologies in the era of the 4th industrial revolution. In a situation where they are currently experiencing artificial intelligence, augmented reality, big data, etc., the degree of interest in the latest technologies of the 4th industrial revolution for radiology students, the necessary competencies in the 4th industrial revolution era, and the prospect of the radiation field employment environment in the 4th industrial revolution era The purpose of this study was to find out the level of awareness of From February 7th to February 18th, 2022, surveys on awareness were analyzed using questionnaires for 2nd and 3rd year students in the Department of Radiology at S University in Daegu. As a result of the study, the level of interest in 3D modeling was shown to be the highest with an average of 3.34 ± 1.09 points, and interest in big data and artificial intelligence was also shown with an average of 3.27 ± 1.17 and 3.33 ± 1.07 points. In addition, the correlation between the awareness of the necessary competencies in the 4th industrial revolution era and the awareness of the prospects for employment in the radiation field in the 4th industrial revolution era was the highest (r=0.778, p<0.01), and the interest in the latest technologies in the 4th industrial revolution and the 4th industrial revolution It was found that there was also a correlation between the perceptions of the necessary capabilities of the times (r=0.694, p<0.01). In the era of the 4th industrial revolution, it is judged that it is necessary to strengthen professional education that can handle the latest technologies such as 3D printing, artificial intelligence, and big data, and to strengthen employment capabilities related to the latest technologies in the field of radiation medical technology.