• 제목/요약/키워드: Medical 3D printing

검색결과 127건 처리시간 0.032초

The Green Cement for 3D Printing in the Construction Industry

  • Park, Joochan;Jung, Euntae;Jang, Changsun;Oh, Chaewoon;Shin, Kyung Nam
    • 에너지공학
    • /
    • 제29권3호
    • /
    • pp.50-56
    • /
    • 2020
  • Currently, 3D printing technology is a new revolutionary additive manufacturing process that can be used for making three dimensional solid objects from digital films. In 2019, this 3D printing technology spreading vigorously in production parts (57%), bridge production (39%), tooling, fixtures, jigs (37%), repair, and maintenance (38%). The applications of 3D printing are expanding to the defense, aerospace, medical field, and automobile industry. The raw materials are playing a key role in 3D printing. Various additive materials such as plastics, polymers, resins, steel, and metals are used for 3D printing to create a variety of designs. The main advantage of the green cement for 3D printing is to enhance the mechanical properties, and durability to meet the high-quality material using in construction. There are several advantages with 3D printing is a limited waste generation, eco-friendly process, economy, 20 times faster, and less time-consuming. This research article reveals that the role of green cement as an additive material for 3D printing.

Effect of internal structures on the accuracy of 3D printed full-arch dentition preparation models in different printing systems

  • Teng Ma;Tiwu Peng;Yang Lin;Mindi Zhang;Guanghui Ren
    • The Journal of Advanced Prosthodontics
    • /
    • 제15권3호
    • /
    • pp.145-154
    • /
    • 2023
  • PURPOSE. The objective of this study was to investigate how internal structures influence the overall and marginal accuracy of full arch preparations fabricated through additive manufacturing in different printing systems. MATERIALS AND METHODS. A full-arch preparation digital model was set up with three internal designs, including solid, hollow, and grid. These were printed using three different resin printers with nine models in each group. After scanning, each data was imported into the 3D data processing software together with the master cast, aligned and trimmed, and then put into the 3D data analysis software again to compare the overall and marginal deviation whose results are expressed using root mean square values and color maps. To evaluate the trueness of the resin model, the test data and reference data were compared, and the precision was evaluated by comparing the test data sets. Color maps were observed for qualitative analysis. Data were statistically analyzed by one-way analysis of variance and Bonferroni method was used for post hoc comparison (α = .05). RESULTS. The influence of different internal structures on the accuracy of 3D printed resin models varied significantly (P < .05). Solid and grid models showed better accuracy, while the hollow model exhibited poor accuracy. The color maps show that the resin models have a tendency to shrink inwards. CONCLUSION. The internal structure design influences the accuracy of the 3D printing model, and the effect varies in different printing systems. Irrespective of the kind of printing system, the printing accuracy of hollow model was observed to be worse than those of solid and grid models.

Computer Aided Process Planning for 3D Printing

  • Park, Hong-Seok;Tran, Ngoc-Hien
    • 한국생산제조학회지
    • /
    • 제24권2호
    • /
    • pp.148-154
    • /
    • 2015
  • Computer aided process planning (CAPP) keeps an important role between the design and manufacturing engineering processes. A CAPP system is a digital link between a computer aided design (CAD) model and manufacturing instructions. CAPP have been researched and applied in manufacturing filed, however, one manufacturing area where CAPP has not been extensively researched is rapid prototyping (RP). RP is a technique for creating directly a three dimensional CAD data into a physical prototype. RP enables to build physical models automatically and to use to reduce the time for the product development cycle as well as to improve the final quality of the designed product. Three-dimensional (3D) printing is one kind of RP that creates three-dimensional objects from CAD models. The paper presents a computer aided process planning system for printing medical products. 3D printing has been used to solve complex medical problems such as surgical instruments, bioengineered products, medical implants, and surgical guides.

Radiological Characteristics of Materials Used in 3-Dimensional Printing with Various Infill Densities

  • Park, So-Yeon;Choi, Noorie;Choi, Byeong Geol;Lee, Dong Myung;Jang, Na Young
    • 한국의학물리학회지:의학물리
    • /
    • 제30권4호
    • /
    • pp.155-159
    • /
    • 2019
  • Radiological properties of newly introduced and existing 3-dimensional (3D) printing materials were evaluated by measuring their Hounsfield units (HUs) at varying infill densities. The six materials for 3D printing which consisted of acrylonitrile butadiene styrene (ABS), a unique ABS plastic blend manufactured by Zortrax (ULTRAT), high impact polystyrene (HIPS), polyethylene terephthalate glycol (PETG), polylactic acid (PLA), and a thermoplastic polyester elastomer manufactured by Zortrax (FLEX) were used. We used computed tomography (CT) imaging to determine the HU values of each material, and thus assess its suitability for various applications in radiation oncology. We found that several material and infill density combinations resembled the HU values of fat, soft tissues, and lungs; however, none of the tested materials exhibited HU values similar to that of bone. These results will help researchers and clinicians develop more appropriate instruments for improving the quality of radiation therapy. Using optimized infill densities will help improve the quality of radiation therapy by producing customized instruments for each field of radiation therapy.

3D 프린팅을 이용한 손 엑스선 검사 보조도구의 유용성 (Usefulness of an Auxiliary Tool for Hand Radiography by Using 3D Printing)

  • 김지원;구본열
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제46권6호
    • /
    • pp.485-491
    • /
    • 2023
  • As an auxiliary tool for fixing the patient's posture when taking an X-ray, sponges with high radiolucencies are laminated in various thicknesses. This study aimed to evaluate the usefulness of an auxiliary tool for hand oblique projection X-ray by manufacturing it with a uniform thickness by 3D printing and comparing it with existing sponge tools. In the auxiliary tool, radiolucency was measured at the stairs where each finger was located, and pixel information values were compared in the digital imaging and communications in medicine(DICOM) image. Contrast to noise ratio(CNR) and signal to noise ratio(SNR) were compared by shooting the hand phantom and the auxiliary tool together. As the thickness of the sponge tool increased, radiolucency decreased by 15.52% and pixel information value increased by 20.61%. The transmittance of the 3D printing tool increased by 0.82%, and the pixel information value differed by 5.66%. CNR and SNR increased by 20.03% and 22.42% in 3D printing compared to existing sponge tools. while taking hand oblique projection, maintaining the thickness of the auxiliary tool uniformly through 3D printing maintains high radiolucency and minimal impact on medical images, and increases CNR and SNR, making it useful as an auxiliary tool for taking hand oblique projection.

3D프린팅 기술을 이용한 심혈관 질환 진단의 유용성 평가 (Evaluating the Usefulness of Diagnosis through 3D Printing Technology)

  • 박천규;김정훈
    • 한국방사선학회논문지
    • /
    • 제15권5호
    • /
    • pp.691-696
    • /
    • 2021
  • 환자의 질병을 예방 및 치료를 위해서는 의료영상을 통한 병변의 해부학적 구조 파악은 중요한 과정중 하나이다. 하지만 스크린으로 통해 보여 지는 영상으로는 한계가 있으므로 3D 프린팅 기술을 이용하여 이를 극복하고자 하는 많은 연구가 진행 중이다. 이를 위해 본 연구는 실제 환자 영상데이터를 이용하여 3차원 심혈관 모델을 구현하였고, 이를 3D 프린터를 이용하여 출력하여 현재 종사하고 있는 의료전문가에게 유용성 테스트를 진행하였다. 유용성 평가 결과 총 5인이 실시한 설문을 리커트 척도로 변환하였을 때 모든 항목 평균값이 4.83점의 높은 결과를 나타내고, 교차분석 결과 x2(P)=10.000(0.265)의 수치로 모든 설문자간 동일하게 긍정적인 설문 결과를 나타냈다. 결과를 바탕으로 3D프린팅 기술이 의료기술 발전에 도움을 줄 것으로 기대한다.

금속 3D 프린팅을 통한 맞춤형 차폐블록 제작에 사용되는 차폐 재료 검증 (Verification of Shielding Materials for Customized Block on Metal 3D Printing)

  • 정경환;한동희;김장오;최현준;백철하
    • 한국방사선학회논문지
    • /
    • 제17권1호
    • /
    • pp.25-30
    • /
    • 2023
  • 의료분야에 3D 프린팅 기술이 활용됨에 따라 금속 재료에 대한 관심이 높아지고 있다. 방사선종양학과에서는 전자선 치료 시 환자의 정상조직에 대한 불필요한 피폭을 차폐하기 위해 차폐블록을 사용하고 있다. 하지만, 납(Lead)과 카드뮴(Cadmium) 같은 중금속 물질의 취급, 숙련도에 따른 재현성과 배치의 불확실성 등에 대한 문제점이 보고되고 있다. 본 연구에서는 금속 3D 프린팅에 사용될 수 있는 재료별 물리적 특성 및 방사선량을 분석하여 전자선 치료 시 활용할 수 있는 맞춤형 차폐블록을 개발하고자 한다. 후보 재료는 알루미늄 합금(d = 2.68 g/cm3), 티타늄 합금(d = 4.42 g/cm3), 코발트 크롬 합금(d = 8.3 g/cm3)을 선별하였다. 10 × 10 cm2 조사면, 6, 9, 12, 16 Me V 에너지로 몬테카를로 시뮬레이션을 이용하여 차폐율 95% 지점의 두께를 도출하였다. 시뮬레이션 결과, 금속 3D 프린팅 재료 중 코발트 크롬 합금(d = 8.35 g/cm3)이 에너지별 차폐두께에서 기존 차폐블록(d = 9.4 g/cm3)과 유사하였다. 향후 금속 3D 프린팅으로 제작한 맞춤형 차폐블록을 이용하여 임상에서의 유용성 검증 평가 및 다양한 방사선 치료계획 조건 등을 통한 실험 검증이 필요할 것으로 사료된다.

3D 바이오 프린팅 기술 현황과 응용 (Status and Prospect of 3D Bio-Printing Technology)

  • 김성호;여기백;박민규;박종순;기미란;백승필
    • KSBB Journal
    • /
    • 제30권6호
    • /
    • pp.268-274
    • /
    • 2015
  • 3D printing technology has been used in various fields such as materials science, manufacturing, education, and medical field. A number of research are underway to improve the 3D printing technology. Recently, the use of 3D printing technology for fabricating an artificial tissue, organ and bone through the laminating of cell and biocompatible material has been introduced and this could make the conformity with the desired shape or pattern for producing human entire organs for transplantation. This special printing technique is known as "3D Bio-Printing", which has potential in biomedical application including patient-customized organ out-put. In this paper, we describe the current 3D bio-printing technology, and bio-materials used in it and present it's practical applications.

바이오화학공학에서 3D 바이오프린팅 기술 (3D Bioprinting Technology in Biochemical Engineering)

  • 엄태윤
    • Korean Chemical Engineering Research
    • /
    • 제54권3호
    • /
    • pp.285-292
    • /
    • 2016
  • 삼차원 프린팅(3D printing) 기술은 공학, 제조업, 교육, 예술, 그리고 바이오의학 같은 다양한 분야에 활용되고 있는 혁신적 기술이다. 프린팅 기술, 재료/생화학물질을 포함한 최근 기술의 진보는 생체적합성 물질, 세포, 지지체 성분의 3D 프린팅으로 복잡한 3D 기능성 조직과 장기를 제작할 수 있는 가능성을 보여주고 있다. 3D 바이오프린팅 기술은 신약 개발, 독성 연구를 위한 조직 모델의 제작에도 활용되고 있다. 3D 바이오프린팅 기술은 공학, 생체재료과학, 세포생물학, 생화학, 물리, 의학 같은 분야의 통섭이 필요한 연구 분야이다.

Clinical Implementation of 3D Printing in the Construction of Patient Specific Bolus for Photon Beam Radiotherapy for Mycosis Fungoides

  • Kim, Sung-woo;Kwak, Jungwon;Cho, Byungchul;Song, Si Yeol;Lee, Sang-wook;Jeong, Chiyoung
    • 한국의학물리학회지:의학물리
    • /
    • 제28권1호
    • /
    • pp.33-38
    • /
    • 2017
  • Creating individualized build-up material for superficial photon beam radiation therapy at irregular surface is complex with rice or commonly used flat shape bolus. In this study, we implemented a workflow using 3D printed patient specific bolus and describe our clinical experience. To provide better fitted build-up to irregular surface, the 3D printing technique was used. The PolyLactic Acid (PLA) which processed with nontoxic plant component was used for 3D printer filament material for clinical usage. The 3D printed bolus was designed using virtual bolus structure delineated on patient CT images. Dose distributions were generated from treatment plan for bolus assigned uniform relative electron density and bolus using relative electron density from CT image and compared to evaluate the inhomogeneity effect of bolus material. Pretreatment QA is performed to verify the relative electron density applied to bolus structure by gamma analysis. As an in-vivo dosimetry, Optically Stimulated Luminescent Dosimeters (OSLD) are used to measure the skin dose. The plan comparison result shows that discrepancies between the virtual bolus plan and printed bolus plan are negligible. (0.3% maximum dose difference and 0.2% mean dose difference). The dose distribution is evaluated with gamma method (2%, 2 mm) at the center of GTV and the passing rate was 99.6%. The OSLD measurement shows 0.3% to 2.1% higher than expected dose at patient treatment lesion. In this study, we treated Mycosis fungoides patient with patient specific bolus using 3D printing technique. The accuracy of treatment plan was verified by pretreatment QA and in-vivo dosimetry. The QA results and 4 month follow up result shows the radiation treatment using 3D printing bolus is feasible to treat irregular patient skin.