• 제목/요약/키워드: Medial vestibular nucleus

검색결과 17건 처리시간 0.027초

흰쥐의 내측 전정신경핵 흥분성에 대한 전침자극의 효과 (Effects of Electroacupuncture on the excitability in Medial Vestibular Nuclei of Rats)

  • 김재효;이성호;손인철;김영선;김민선
    • Korean Journal of Acupuncture
    • /
    • 제26권3호
    • /
    • pp.27-42
    • /
    • 2009
  • Objectives : The vestibular system detects head movement and serve to regulate and maintain the equilibrium and orientation of the body. It is known that the vestibular imbalance leads to vestibular symptoms such as nausea, vomiting, vertigo and postural disturbance. The objectives of the present study were to examine a modification of the dynamic activities of medial vestibular nucleus (MVN) neurons following electroacupuncture (EA) of GB43 (Hyepgye). Methods : In Sprague-Dawley rats weighing $250{\sim}300g$, dynamic responses induced by sinusoidal whole body rotation about vertical axis at 0.2 Hz were observed in MVN of rats during EA of GB43 (Hyepgye) with 0.2 ms, 40 Hz and $600{\pm}200{\mu}A$. Also, expression of cFos protein was observed 2 hours after EA for 30 mins. Results : In dynamic response of vestibular neuron, the excitatory or inhibitory responses of gain were predominant in the ipsilateral MVN neurons during EA but not predominant in the contralateral MVN. Most neurons showing decreased gain were classified to inhibitory responses of spontaneous firing discharge during EA and ones showing increased gain were classified to excitatory response of spontaneous firing discharge during EA. Also, EA of the left GB43 (Hyepgye) for 30 mins produced the expression of cFos protein in MVN, inferior olive (IO) and solitary tract nuclei (SOL). Spatial expressions of cFos protein were predominant in the contralateral MVN, ipsilateral IO and bilateral SOL. Conclusion : These results suggest that the excitability of MVN neurons was influenced by EA of GB43 (Hyepgye) and EA may be related to the convergence on MVN.

  • PDF

Roles of $Ca^{2+}-Activated\;K^+$ Conductances on Spontaneous Firing Patterns of Isolated Rat Medial Vestibular Nucleus Neurons

  • Chun, Sang-Woo;Jun, Jae-Woo;Park, Byung-Rim
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제4권1호
    • /
    • pp.1-8
    • /
    • 2000
  • To investigate the contributions of intrinsic membrane properties to the spontaneous activity of medial vestibular nucleus (MVN) neurons, we assessed the effects of blocking large and small calcium-activated potassium channels by means of patch clamp recordings. Almost all the MVN neurons recorded in neonatal $(P13{\sim}P17)$ rat were shown to have either a single deep after-hyperpolarization (AHP; type A cells), or an early fast and a delayed slow AHP (type B cells). Among the recorded MVN cells, immature action potential shapes were found. Immature type A cell showed single uniform AHP and immature B cell showed a lack of the early fast AHP, and the delayed AHP was separated from the repolarization phase of the spike by a period of isopotentiality. Application of apamin and charybdotoxin (CTX), which selectively block the small and large calcium-activated potassium channels, respectively, resulted in significant changes in spontaneous firings. In both type A and type B cells, CTX (20 nM) resulted in a significant increase in spike frequency but did not induce bursting activity. By contrast, apamin (300 nM) selectively abolished the delayed slow AHP and induced bursting activity in type B cells. Apamin had no effect on the spike frequency of type A cells. These data suggest that there are differential roles of apamin and CTX sensitive potassium conductances in spontaneous firing patterns of MVN neurons, and these conductances are important in regulating the intrinsic rhythmicity and excitability.

  • PDF

c-fos mRNA Expression in the Vestibular System following Hypergravity Stimulation in Rats

  • Jin Guang-Shi;Lee Jae-Hyo;Lee Jae-Hee;Lee Moon-Young;Kim Min-Sun;Jin Yuan Zhe;Song Jeong-Hoon;Park Byung-Rim
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제11권1호
    • /
    • pp.1-7
    • /
    • 2007
  • Altered environmental gravity, including both hypo- and hypergravity, may result in space adaptation syndrome. To explore the characteristics of this adaptive plasticity, the expression of immediate early gene c-fos mRNA in the vestibular related tissues following an exposure to hypergravity stimulus was determined in rats. The animals were subjected to a force of 2 g (twice earth's gravity) for 1, 3, or 12 h, and were examined poststimulus at 0, 2, 6, 12, and 24 h. RT-PCR (reverse transcription polymerase chain reaction) and real-time quantitative RT-PCR were adopted to analyze temporal changes in the expression of c-fos mRNA. The hypergravity stimulus increased the expression of c-fos mRNA in the vestibular ganglion, medial vestibular nucleus, inferior vestibular nucleus, hippocampus, cerebellum, and cortex. The peak expression occurred at 0 h poststimulation in animals stimulated with hypergravity for 1 h, and at 6 h poststimulus in those stimulated for 3 h. In contrast, those stimulated for 12 h exhibited dual peaks at 0 and 12 h poststimulus. Bilateral labyrinthectomy markedly attenuated the degree of c-fos mRNA expression. Glutamate receptor antagonist also dramatically attenuated the degree of c-fos mRNA expression. These results indicate that expression of c-fos mRNA in response to hypergravity occurs in the vestibular related tissues of the central nervous system, in which peripheral vestibular receptors and glutamate receptors play an important role. The temporal pattern of c-fos mRNA expression depended on the duration of the hypergravity stimulus.

흰쥐의 족삼리 및 태충 전침자극에 따른 뇌대사활성의 변화 (Alterations of Cerebral Metabolic Activation Following Electro-Acupuncture Stimulation on ST36 and LR3 Acu-Points in Rats)

  • 손영주;정혁상;구자승;원란;김용석;박영배;손낙원
    • Journal of Acupuncture Research
    • /
    • 제19권1호
    • /
    • pp.159-174
    • /
    • 2002
  • Objective : The meridian theory in oriental medicine explains that each acu-point has a characteristic functional effect. It will be supposed that an acupuncture stimulation on different acu-point evokes different activation on different areas in the central nervous system(CNS) according to the meridian theory. On this supposition, our group tried the semi-quantitative [14C]2-deoxyglucose([14C]2-DG) autoradiography on the acupuncture stimulation to the hindlimb acu-points of Sprague-Dawley rats. Methods : A venous catheter for the intravenous administration of isotope was equipped in the right external jugular vein on 3 days prior to the [14C]2-DG study. On the day of the study, two acupuncture needles were inserted into the ST36(Zusanli) or LR3(Taichong) on the left hindlimb. Electro-acupuncture stimulation (2 Hz, 5 ms, 1~3 mA, 15 minutes) started just before the i.v. injection of [14C]2-DG ($25{\mu}Ci/rat$). The brain and the spinal cord were removed and processed for the [14C] 2-DG autoradiography. Results : The EA stimulation on ST36 reveals over 120% metaboilc activation in Arcuate nucleus, Anterior pretectal nucleus, Dorsal cochlear nucleus, Interposed cerebellar nucleus, and Nucleus of Darkschewitsch. The EA stimulation on LR3 reveals over 120% metaboilc activation in Lateral habenula nucleus, Medial vestibular nucleus, Ventromedial thalamic nucleus, Anteroventral thalamic nucleus, Anterior cingulate cortex, Dentate gyrus, Antero cortical amygdaloid nucleus, Anterior pretectal nucleus, and Dorsal tegmental nucleus compared with the non EA stimulation control group. Conclusion : These results demonstrate that the different acu-points evoke the different activations in brain areas. And with this functional brain mapping study, a new scientific elucidation for the basis of the acupuncture-meridian theory in oriental medicine through differences of activated area in CNS according to the each acupuncture point.

  • PDF

Effect of Glutamate on the Vestibulo-Solitary Projection after Sodium Nitroprusside-Induced Hypotension in Conscious Rats

  • Li, Li-Wei;Ji, Guang-Shi;Yang, Yan-Zhao;Ameer, Abdul Nasir;Kim, Min Sun;Park, Byung Rim;Jin, Yuan-Zhe
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제19권3호
    • /
    • pp.275-281
    • /
    • 2015
  • Orthostatic hypotension is most common in elderly people, and its prevalence increases with age. Attenuation of the vestibulo-sympathetic reflex (VSR) is commonly associated with orthostatic hypotension. In this study, we investigated the role of glutamate on the vestibulo-solitary projection of the VSR pathway to clarify the pathophysiology of orthostatic hypotension. Blood pressure and expression of both pERK and c-Fos protein were evaluated in the nucleus tractus solitarius (NTS) after microinjection of glutamate into the medial vestibular nucleus (MVN) in conscious rats with sodium nitroprusside (SNP)-induced hypotension that received baroreceptor unloading via sinoaortic denervation (SAD). SNP-induced hypotension increased the expression of both pERK and c-Fos protein in the NTS, which was abolished by pretreatment with glutamate receptor antagonists (MK801 or CNQX) in the MVN. Microinjection of glutamate receptor agonists (NMDA or AMPA) into the MVN increased the expression of both pERK and c-Fos protein in the NTS without causing changes in blood pressure. These results indicate that both NMDA and AMPA receptors play a significant role in the vestibulo-solitary projection of the VSR pathway for maintaining blood pressure, and that glutamatergic transmission in this projection might play a key role in the pathophysiology of orthostatic hypotension.

Dual control of the vestibulosympathetic reflex following hypotension in rats

  • Park, Sang Eon;Jin, Yuan-Zhe;Park, Byung Rim
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제21권6호
    • /
    • pp.675-686
    • /
    • 2017
  • Orthostatic hypotension (OH) is associated with symptoms including headache, dizziness, and syncope. The incidence of OH increases with age. Attenuation of the vestibulosympathetic reflex (VSR) is also associated with an increased incidence of OH. In order to understand the pathophysiology of OH, we investigated the physiological characteristics of the VSR in the disorder. We applied sodium nitroprusside (SNP) to conscious rats with sinoaortic denervation in order to induce hypotension. Expression of pERK in the intermediolateral cell column (IMC) of the T4~7 thoracic spinal regions, blood epinephrine levels, and blood pressure were evaluated following the administration of glutamate and/or SNP. SNP-induced hypotension led to increased pERK expression in the medial vestibular nucleus (MVN), rostral ventrolateral medullary nucleus (RVLM) and the IMC, as well as increased blood epinephrine levels. We co-administered either a glutamate receptor agonist or a glutamate receptor antagonist to the MVN or the RVLM. The administration of the glutamate receptor agonists, AMPA or NMDA, to the MVN or RVLM led to elevated blood pressure, increased pERK expression in the IMC, and increased blood epinephrine levels. Administration of the glutamate receptor antagonists, CNQX or MK801, to the MVN or RVLM attenuated the increased pERK expression and blood epinephrine levels caused by SNP-induced hypotension. These results suggest that two components of the pathway which maintains blood pressure are involved in the VSR induced by SNP. These are the neurogenic control of blood pressure via the RVLM and the humoral control of blood pressure via epinephrine release from the adrenal medulla.

Functional Connections of the Vestibulo-spino-adrenal Axis in the Control of Blood Pressure Via the Vestibulosympathetic Reflex in Conscious Rats

  • Lu, Huan-Jun;Li, Mei-Han;Li, Mei-Zhi;Park, Sang Eon;Kim, Min Sun;Jin, Yuan-Zhe;Park, Byung Rim
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제19권5호
    • /
    • pp.427-434
    • /
    • 2015
  • Significant evidence supports the role of the vestibular system in the regulation of blood pressure during postural movements. In the present study, the role of the vestibulo-spino-adrenal (VSA) axis in the modulation of blood pressure via the vestibulosympathetic reflex was clarified by immunohistochemical and enzyme immunoassay methods in conscious rats with sinoaortic denervation. Expression of c-Fos protein in the intermediolateral cell column of the middle thoracic spinal regions and blood epinephrine levels were investigated, following microinjection of glutamate receptor agonists or antagonists into the medial vestibular nucleus (MVN) and/or sodium nitroprusside (SNP)-induced hypotension. Both microinjection of glutamate receptor agonists (NMDA and AMPA) into the MVN or rostral ventrolateral medullary nucleus (RVLM) and SNP-induced hypotension led to increased number of c-Fos positive neurons in the intermediolateral cell column of the middle thoracic spinal regions and increased blood epinephrine levels. Pretreatment with microinjection of glutamate receptor antagonists (MK-801 and CNQX) into the MVN or RVLM prevented the increased number of c-Fos positive neurons resulting from SNP-induced hypotension, and reversed the increased blood epinephrine levels. These results indicate that the VSA axis may be a key component of the pathway used by the vestibulosympathetic reflex to maintain blood pressure during postural movements.