Major Class Recommendation System based on Deep learning using Network Analysis (네트워크 분석을 활용한 딥러닝 기반 전공과목 추천 시스템)
-
- Journal of Intelligence and Information Systems
- /
- v.27 no.3
- /
- pp.95-112
- /
- 2021
In university education, the choice of major class plays an important role in students' careers. However, in line with the changes in the industry, the fields of major subjects by department are diversifying and increasing in number in university education. As a result, students have difficulty to choose and take classes according to their career paths. In general, students choose classes based on experiences such as choices of peers or advice from seniors. This has the advantage of being able to take into account the general situation, but it does not reflect individual tendencies and considerations of existing courses, and has a problem that leads to information inequality that is shared only among specific students. In addition, as non-face-to-face classes have recently been conducted and exchanges between students have decreased, even experience-based decisions have not been made as well. Therefore, this study proposes a recommendation system model that can recommend college major classes suitable for individual characteristics based on data rather than experience. The recommendation system recommends information and content (music, movies, books, images, etc.) that a specific user may be interested in. It is already widely used in services where it is important to consider individual tendencies such as YouTube and Facebook, and you can experience it familiarly in providing personalized services in content services such as over-the-top media services (OTT). Classes are also a kind of content consumption in terms of selecting classes suitable for individuals from a set content list. However, unlike other content consumption, it is characterized by a large influence of selection results. For example, in the case of music and movies, it is usually consumed once and the time required to consume content is short. Therefore, the importance of each item is relatively low, and there is no deep concern in selecting. Major classes usually have a long consumption time because they have to be taken for one semester, and each item has a high importance and requires greater caution in choice because it affects many things such as career and graduation requirements depending on the composition of the selected classes. Depending on the unique characteristics of these major classes, the recommendation system in the education field supports decision-making that reflects individual characteristics that are meaningful and cannot be reflected in experience-based decision-making, even though it has a relatively small number of item ranges. This study aims to realize personalized education and enhance students' educational satisfaction by presenting a recommendation model for university major class. In the model study, class history data of undergraduate students at University from 2015 to 2017 were used, and students and their major names were used as metadata. The class history data is implicit feedback data that only indicates whether content is consumed, not reflecting preferences for classes. Therefore, when we derive embedding vectors that characterize students and classes, their expressive power is low. With these issues in mind, this study proposes a Net-NeuMF model that generates vectors of students, classes through network analysis and utilizes them as input values of the model. The model was based on the structure of NeuMF using one-hot vectors, a representative model using data with implicit feedback. The input vectors of the model are generated to represent the characteristic of students and classes through network analysis. To generate a vector representing a student, each student is set to a node and the edge is designed to connect with a weight if the two students take the same class. Similarly, to generate a vector representing the class, each class was set as a node, and the edge connected if any students had taken the classes in common. Thus, we utilize Node2Vec, a representation learning methodology that quantifies the characteristics of each node. For the evaluation of the model, we used four indicators that are mainly utilized by recommendation systems, and experiments were conducted on three different dimensions to analyze the impact of embedding dimensions on the model. The results show better performance on evaluation metrics regardless of dimension than when using one-hot vectors in existing NeuMF structures. Thus, this work contributes to a network of students (users) and classes (items) to increase expressiveness over existing one-hot embeddings, to match the characteristics of each structure that constitutes the model, and to show better performance on various kinds of evaluation metrics compared to existing methodologies.
At the initial stage of Internet advertising, banner advertising came into fashion. As the Internet developed into a central part of daily lives and the competition in the on-line advertising market was getting fierce, there was not enough space for banner advertising, which rushed to portal sites only. All these factors was responsible for an upsurge in advertising prices. Consequently, the high-cost and low-efficiency problems with banner advertising were raised, which led to an emergence of keyword advertising as a new type of Internet advertising to replace its predecessor. In the beginning of 2000s, when Internet advertising came to be activated, display advertisement including banner advertising dominated the Net. However, display advertising showed signs of gradual decline, and registered minus growth in the year 2009, whereas keyword advertising showed rapid growth and started to outdo display advertising as of the year 2005. Keyword advertising refers to the advertising technique that exposes relevant advertisements on the top of research sites when one searches for a keyword. Instead of exposing advertisements to unspecified individuals like banner advertising, keyword advertising, or targeted advertising technique, shows advertisements only when customers search for a desired keyword so that only highly prospective customers are given a chance to see them. In this context, it is also referred to as search advertising. It is regarded as more aggressive advertising with a high hit rate than previous advertising in that, instead of the seller discovering customers and running an advertisement for them like TV, radios or banner advertising, it exposes advertisements to visiting customers. Keyword advertising makes it possible for a company to seek publicity on line simply by making use of a single word and to achieve a maximum of efficiency at a minimum cost. The strong point of keyword advertising is that customers are allowed to directly contact the products in question through its more efficient advertising when compared to the advertisements of mass media such as TV and radio, etc. The weak point of keyword advertising is that a company should have its advertisement registered on each and every portal site and finds it hard to exercise substantial supervision over its advertisement, there being a possibility of its advertising expenses exceeding its profits. Keyword advertising severs as the most appropriate methods of advertising for the sales and publicity of small and medium enterprises which are in need of a maximum of advertising effect at a low advertising cost. At present, keyword advertising is divided into CPC advertising and CPM advertising. The former is known as the most efficient technique, which is also referred to as advertising based on the meter rate system; A company is supposed to pay for the number of clicks on a searched keyword which users have searched. This is representatively adopted by Overture, Google's Adwords, Naver's Clickchoice, and Daum's Clicks, etc. CPM advertising is dependent upon the flat rate payment system, making a company pay for its advertisement on the basis of the number of exposure, not on the basis of the number of clicks. This method fixes a price for advertisement on the basis of 1,000-time exposure, and is mainly adopted by Naver's Timechoice, Daum's Speciallink, and Nate's Speedup, etc, At present, the CPC method is most frequently adopted. The weak point of the CPC method is that advertising cost can rise through constant clicks from the same IP. If a company makes good use of strategies for maximizing the strong points of keyword advertising and complementing its weak points, it is highly likely to turn its visitors into prospective customers. Accordingly, an advertiser should make an analysis of customers' behavior and approach them in a variety of ways, trying hard to find out what they want. With this in mind, her or she has to put multiple keywords into use when running for ads. When he or she first runs an ad, he or she should first give priority to which keyword to select. The advertiser should consider how many individuals using a search engine will click the keyword in question and how much money he or she has to pay for the advertisement. As the popular keywords that the users of search engines are frequently using are expensive in terms of a unit cost per click, the advertisers without much money for advertising at the initial phrase should pay attention to detailed keywords suitable to their budget. Detailed keywords are also referred to as peripheral keywords or extension keywords, which can be called a combination of major keywords. Most keywords are in the form of texts. The biggest strong point of text-based advertising is that it looks like search results, causing little antipathy to it. But it fails to attract much attention because of the fact that most keyword advertising is in the form of texts. Image-embedded advertising is easy to notice due to images, but it is exposed on the lower part of a web page and regarded as an advertisement, which leads to a low click through rate. However, its strong point is that its prices are lower than those of text-based advertising. If a company owns a logo or a product that is easy enough for people to recognize, the company is well advised to make good use of image-embedded advertising so as to attract Internet users' attention. Advertisers should make an analysis of their logos and examine customers' responses based on the events of sites in question and the composition of products as a vehicle for monitoring their behavior in detail. Besides, keyword advertising allows them to analyze the advertising effects of exposed keywords through the analysis of logos. The logo analysis refers to a close analysis of the current situation of a site by making an analysis of information about visitors on the basis of the analysis of the number of visitors and page view, and that of cookie values. It is in the log files generated through each Web server that a user's IP, used pages, the time when he or she uses it, and cookie values are stored. The log files contain a huge amount of data. As it is almost impossible to make a direct analysis of these log files, one is supposed to make an analysis of them by using solutions for a log analysis. The generic information that can be extracted from tools for each logo analysis includes the number of viewing the total pages, the number of average page view per day, the number of basic page view, the number of page view per visit, the total number of hits, the number of average hits per day, the number of hits per visit, the number of visits, the number of average visits per day, the net number of visitors, average visitors per day, one-time visitors, visitors who have come more than twice, and average using hours, etc. These sites are deemed to be useful for utilizing data for the analysis of the situation and current status of rival companies as well as benchmarking. As keyword advertising exposes advertisements exclusively on search-result pages, competition among advertisers attempting to preoccupy popular keywords is very fierce. Some portal sites keep on giving priority to the existing advertisers, whereas others provide chances to purchase keywords in question to all the advertisers after the advertising contract is over. If an advertiser tries to rely on keywords sensitive to seasons and timeliness in case of sites providing priority to the established advertisers, he or she may as well make a purchase of a vacant place for advertising lest he or she should miss appropriate timing for advertising. However, Naver doesn't provide priority to the existing advertisers as far as all the keyword advertisements are concerned. In this case, one can preoccupy keywords if he or she enters into a contract after confirming the contract period for advertising. This study is designed to take a look at marketing for keyword advertising and to present effective strategies for keyword advertising marketing. At present, the Korean CPC advertising market is virtually monopolized by Overture. Its strong points are that Overture is based on the CPC charging model and that advertisements are registered on the top of the most representative portal sites in Korea. These advantages serve as the most appropriate medium for small and medium enterprises to use. However, the CPC method of Overture has its weak points, too. That is, the CPC method is not the only perfect advertising model among the search advertisements in the on-line market. So it is absolutely necessary that small and medium enterprises including independent shopping malls should complement the weaknesses of the CPC method and make good use of strategies for maximizing its strengths so as to increase their sales and to create a point of contact with customers.
This study is to empirically examine the primary dimensions of visual merchandising (VMD) of internet shopping mall, namely store design, merchandise, and merchandising cues, to be a attractive virtual store to the shoppers. The authors reviewed the literature related to the major components of VMD from the perspective of the AIDA model, which has been mainly applied to the offline store settings. The major purposes of the study are as follows; first, tries to derive the variables related with the components of visual merchandising through reviewing the existing literatures, establish the hypotheses, and test it empirically. Second, examines the relationships between the components of VMD and the attitude toward the VMD, however, putting more emphasis on finding out the component structure of the VMD. VMD needs to be examined with the perspective that an online shopping mall is a virtual self-service or clerkless store, which could reduce the number of employees, help the shoppers search, evaluate and purchase for themselves, and to be explored in terms of the in-store persuasion processes of customers. This study reviewed the literatures related to store design, merchandise, and merchandising cues which might be relevant to the store, product, and promotion respectively. VMD is a total communication tool, and AIDA model could explain the in-store consumer behavior of online shopping. Store design has to do with triggering a consumer attention to the online mall, merchandise with a product related interest, and merchandising cues with promotions such as recommendation and links that induce the desire to pruchase. These three steps might be seen as the processes for purchase actions. The theoretical rationale for the relationship between VMD and AIDA could be found in Tyagi(2005) that the three steps of consumer-oriented merchandising are a store, a product assortment, and placement, in Omar(1999) that three types of interior display are a architectural design display, commodity display, and point-of-sales(POS) display, and in Davies and Ward(2005) that the retail store interior image is related to an atmosphere, merchandise, and in-store promotion. Lee et al(2000) suggested as the web merchandising components a merchandising cues, a shopping metaphor which is an assistant tool for search, a store design, a layout(web design), and a product assortment. The store design which includes differentiation, simplicity and navigation is supposed to be related to the attention to the virtual store. Second, the merchandise dimensions comprising product assortments, visual information and product reputation have to do with the interest in the product offerings. Finally, the merchandising cues that refer to merchandiser(MD)'s recommendation of products and providing the hyperlinks to relevant goods for the shopper is concerned with attempt to induce the desire to purchase. The questionnaire survey was carried out to collect the data about the consumers who would shop at internet shopping malls frequently. To select the subject malls, the mall ranking data announced by a mall rating agency was used to differentiate the most popular and least popular five mall each. The subjects was instructed to answer the questions after navigating the designated mall for five minutes. The 300 questionnaire was distributed to the consumers, 166 samples were used in the final analysis. The empirical testing focused on identifying and confirming the dimensionality of VMD and its subdimensions using a structural equation modeling method. The confirmatory factor analysis for the endogeneous and exogeneous variables was carried out in four parts. The second-order factor analysis was done for a store design, a merchandise, and a merchandising cues, and first-order confirmatory factor analysis for the attitude toward the VMD. The model test results shows that the chi-square value of structural equation is 144.39(d.f 49), significant at 0.01 level which means the proposed model was rejected. But, judging from the ratio of chi-square value vs. degree of freedom, the ratio was 2.94 which smaller than an acceptable level of 3.0, RMR is 0.087 which is higher than a generally acceptable level of 0.08. GFI and AGFI is turned out to be 0.90 and 0.84 respectively. Both NFI and NNFI is 0.94, and CFI 0.95. The major test results are as follows; first, the second-order factor analysis and structural equational modeling reveals that the differentiation, simplicity and ease of identifying current status of the transaction are confirmed to be subdimensions of store design and to be a significant predictors of the dependent variable. This result implies that when designing an online shopping mall, it is necessary to differentiate visually from other malls to improve the effectiveness of the communications of store design. That is, the differentiated store design raise the contrast stimulus to sensory organs to promote the memory of the store and to have a favorable attitude toward the VMD of a store. The results that navigation which means the easiness of identifying current status of shopping affects the attitude to VMD could be interpreted that the navigating processes via the hyperlinks which is characteristics of an internet shopping is a complex and cognitive process and shoppers are likely to lack the sense of overall structure of the store. Consequently, shoppers are likely to be alost amid shopping not knowing where to go. The orientation tool enhance the accessibility of information to raise the perceptive power about the store environment.(Titus & Everett 1995) Second, the primary dimension of merchandise and its subdimensions was confirmed to be unidimensional respectively, have a construct validity, and nomological validity which the VMD dimensions supposed to have a positive correlation with the dependent variable. The subdimensions of product assortment, brand fame and information provision proved to have a positive effect on the attitude toward the VMD. It could be interpreted that the more plentiful the product and brand assortment of the mall is, the more likely the shoppers to favor it. Brand fame and information provision as well affect the VMD attitude, which means that the more famous the brand, the more likely the shoppers would trust and feel familiar with the mall, and the plentifully and visually presented information could have the shopper have a favorable attitude toward the store VMD. Third, it turned out to be that merchandising cue of product recommendation and hyperlinks affect the VMD attitude. This could be interpreted that recommended products could reduce the uncertainty related with the purchase decision, and the hyperlinks to relevant products would help the shopper save the cognitive effort exerted into the information search and gathering, which could lead to a favorable attitude to the VMD. This study tried to sheds some new light on the VMD of online store by reviewing the variables mentioned to be relevant with offline VMD in the existing literatures, and tried to link the VMD components from the perspective of AIDA model. The effect size of the VMD dimensions on the attitude was in the order of the merchandise, the store design and the merchandising cues.It is said that an internet has an unlimited place for display, however, the virtual store is not unlimited since the consumer has a limited amount of cognitive ability to process the external information and internal memory. Particularly, the shoppers are likely to face some difficulties in decision making on account of too many alternative and information overloads. Therefore, the internet shopping mall manager should take into consideration the cost of information search on the part of the consumer, to establish the optimal product placements and search routes. An efficient store composition would be possible by reducing the psychological burdens and cognitive efforts exerted to information search and alternatives evaluation. The store image is in most part determined by the product category and its brand it deals in. The results of this study support this proposition that the merchandise is most important to the VMD attitude than other components, the manager is required to take a strategic approach to VMD. The internet users are getting more accustomed and more knowledgeable about the internet media and more likely to accept the internet as a shopping channel as the period of time during which they use the internet to shop become longer. The web merchandiser should be aware that the product introduction using a moving pictures and a bulletin board become more important in order to present the interactive product information visually and communicate with customers more actively, therefore leading to making the quantity and quality of product information more rich.