• Title/Summary/Keyword: Media Flow

Search Result 944, Processing Time 0.022 seconds

A Study on Simplifying Flow Analysis of VaRI Process (VaRI 공정 유동해석 간소화 방법에 대한 연구)

  • Kim, Yeongmin;Lee, Jungwan;Kim, Jungsoo;Ahn, Sehoon;Oh, Youngseok;Yi, Jin Woo;Kim, Wiedae;Um, Moon-kwang
    • Composites Research
    • /
    • v.34 no.4
    • /
    • pp.233-240
    • /
    • 2021
  • VaRI(Vacuum assisted Resin Infusion) process, which is cost effective and suitable for manufacturing large-sized composites, is an OoA(Out-of Autoclave) process. For rapid resin infusion in the VaRI process, a DM(distribution media) is placed on top of the fabric. The resin is rapidly supplied in plane direction of the fiber along the DM, and then the supplied resin is impregnated in the out-of-plane direction of fiber. It is difficult to predict the flow of resin because the flow of in-plane direction and the out-of-plane direction occur together, and a 3D numerical analysis program is used to simulate the resin infusion process. However, in order to analyze in 3D, many elements are required in the out-of-plane direction of fabric. And the product size is larger, the longer the analysis time needs. Therefore, in this study, a method was suggested to reduce the time required for flow analysis by simplifying the 3D flow analysis to 2D flow analysis. The usefulness was verified by comparing the 3D flow analysis with the simplified 2D flow analysis at the same conditions. The filling time error was about 7% and the reduction of flow analysis time was about 95%. In addition, by utilizing the constant difference in the flow front between the top, middle, and bottom of the fabric of the 3D analysis, the flow front of the top, middle, and bottom of the fabric can be also predicted in the 2D flow analysis.

Real Examples based Natural Phenomena Synthesis

  • An, HyangA;Seo, Yong-Ho;Park, Jinho
    • International journal of advanced smart convergence
    • /
    • v.2 no.2
    • /
    • pp.7-9
    • /
    • 2013
  • Current physics-based simulation is an important tool in the fluid animation. However some problems require a new change to current research trends which depend only on the simulation. The ultimate goal of this project is to obtain information of flow example, analyze an example through machine learning and the novel fluid animation reconfigure without physical simulation.

THE TRANSPORT OF NUCLEAR CONTAMINATION IN FRACTURED POROUS MEDIA

  • Jim-Douglas, Jr.;Anna M.Spagnuolo
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.4
    • /
    • pp.723-761
    • /
    • 2001
  • The objects of this paper are to formulated a model for the transport of a chain of radioactive waste products in a fractured porous medium, to devise an effective and efficient numerical method for approximating the solution of the model, and to demonstrated the convergence of the numerical method. The formulation begins from a model in an unfractured (single porosity) medium, passes through a double porosity model in a fractured medium, and ends with a modified single porosity model that takes the relevant time scales of the flow and the nuclear decay.

  • PDF

Study on the Effects of the Flow Characteristics and Size on the Peformance of Molten Carbonate Fuel Cells Using CFD (CFD를 통한 용융탄산염 연료전지의 유동 및 크기에 따른 운전 특성 분석)

  • KIM, DONG-WOO;KIM, HA-YOUNG;CHOI, JEONG-HWAN;LEE, CHANG-WHAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.2
    • /
    • pp.147-154
    • /
    • 2019
  • In this study, effects of flow types and size of molten carbonate fuel cells (MCFCs) were investigated using CFD simulation. In the simulation, the current collector of MCFCs were assumed to be an porous media. With the area of $0.09m^2$, the effect of flow types such as Co-flow, Counter-flow, Cross-flow were studied. After that the effect of the size and flow direction was studied. Among three-flow types, MCFCs with co-flow type shows more uniform distribution and current density distribution.

Analyses on Satisfaction and Perception for Space according to Experiencing Interactive Media in Exhibition Halls (인터렉티브 미디어 체험에 따른 전시공간에 대한 공간 만족도 및 인지도 분석)

  • Song, Yoo-Young;Lee, Ji-Hyun;Kim, Soo-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.3
    • /
    • pp.271-280
    • /
    • 2012
  • This study examines the influence of experiencing interactive media in exhibition halls on the satisfaction and perception for the exhibition space. Field measurements and surveys were performed in two exhibition halls where various interactive media were exhibited. Results imply that experiencing interactive media was important to enhance understanding the information provided by them. In order to improve satisfaction for the exhibition halls, the layout of space need to be organized effectively in a way that visitors easily feel interest in the contents and information exhibited in the space. Also, in order to keep better perception for exhibition space, the information provided in the space should be organized clearly and open to visitors easily. The flow of visitors' traffic in the exhibition space should be perceived easily by the visitors. Multiple linear regression indicated that the space should be organized effectively with good visual composition that surrounds the exhibits in order to improve satisfaction level for the exhibition hall. In addition, various information provided by the media contributed to improve perception for the exhibition hall.

Performance of Advanced Sewage Treatment Process with Waste Oyster Shell Media in Rural Area (폐굴껍질 담체를 이용한 마을하수고도처리공정의 성능평가)

  • Lim, Bong-Su;Yang, Yan-Hao
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.1
    • /
    • pp.30-36
    • /
    • 2006
  • This study was carried out to evaluate the performance of Modified Ludzsck Etinger (MLE) process with waste oyster shell media in aerobic tank. Influent flow was 36 L/d and the order of reactor was anoxic, aerobic and sedimentation tank and unit hydraulic retention time was 2 hr, 6 hr and 4 hr, respectively. Sludge recycling rate in sedimentation tank and internal recycling rate were 100%. Media fill rate in aerobic tank was 5%, 10% and 17% and fluid MLSS concentration in aerobic tank was 3000~4000 mg/L. Average TCOD removal rate was 91~93%, TBOD 92~96%, SS 95~96% and when media fill rate was 10% or more, in organic compound removal it could satisfy with wastewater discharge standard. Average total nitrogen removal rate was 70~76% and average total phosphorous removal rate was 58~65%. With media fill rate increasing, total phosphorous average removal rate also increased. For it was that released calcium ion from waste oyster shell reacted with soluble phosphorous. From these experiment results, the MLE process using waste oyster shell as media is a practical method for advanced sewage treatment in rural area.

Advanced Wastewater Treatment Using Biofilter System with Floating Media under Alternative Flow (유로변경식 부상여재 생물여과시스템을 이용한 하수고도처리)

  • Ryu, Hong-Duck;Lee, Jeong-Hun;Lee, Sang-Ill
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.2
    • /
    • pp.250-257
    • /
    • 2006
  • The objective of this study is to propose an alternative process for the small sewage treatment plants in rural communities. A biofilter has been used for biological wastewater treatment, which is becoming the alternative to the conventional activated sludge system. The proposed process used in this study, which is packed with floating media (i.e. expanded polystylene), has advantages of biofilter system and alternative flow system and they are incorporated into one process. Pilot and bench scale studies were performed using domestic wastewater. In the results of pilot plant study, it was observed that the stable effluent water quality was achieved and it met the present effluent criteria of suspended solid (SS), organic matters, T-N and T-P. In the study for determination of the cycle of backwashing, it was observed that the cycle of backwashing depended on BOD loading rates of influents. In the BOD loading rates of $0.5kg\;BOD/m^3{\cdot}day$ and $1.0kg\;BOD/m^3{\cdot}day$, the backwashing cycle of 28 hour and 16 hour were needed, respectively. The optimum backwashing time was 120~80 seconds at the media expansion rate of 50%. In the removal of SS, organic matters, T-N and T-P, SS removal was rather achieved by physical filtration than biological mechanism and the removal of organic matters except for SS, T-N and T-P were mainly rather achieved by biological mechanism than physical filtration. In bench-scale study, the effects of recirculation rate was investigated on removal of SS, TCOD, T-N and T-P. It was observed that the recirculation made removal efficiencies of SS, TCOD, T-N and T-P increased. Especially, in T-N removal, the increase of T-N removal efficiency of 40% was observed in the reicirculation rate of 1Q compared with 0Q.

A study on application of eco-friendly follow-up process connected with livestock wastewater treatment plant using the upflow constructed wetland (가축분뇨처리시설과 연계한 상향류식 인공습지의 자연형 후속처리공정 적용방안에 관한 연구)

  • Choi, Hanna;Cho, Eunha;Kang, Hogeun;Park, Joohyun;Kang, Seonhong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.3
    • /
    • pp.359-370
    • /
    • 2015
  • This study developed an up-flow wetland providing either an eco-friendly follow-up process of medium-sized public treatment facility for livestock manure or a non-point source pollution controller near livestock farms. The four bench-scale up-flow wetlands were operated with four different bed media sets. The removal efficiencies of the wetland effluent for CODCr, TN, TP, SS were 35.2 %, 29.5 %, 31.2 % and 52.2 % for set 1(Blank, without reed, with bio-ceramic), 40.6 %, 43.4 %, 42.2 % and 55.4 % for set 2(with bio-reed & without bio-ceramic), 45.2 %, 48.7 %, 46.6 % and 66.3 % for set 3(with bio-reed & bio-ceramic), 32.9 %, 27.3 %, 29.3 % and 54.1 % for Set 4(with reed & bio ceramic), respectively. The set 3 condition having a mixture of bio-reed and bio-ceramic showed the highest efficiency in the bench-scale evaluation. This study suggests a mixture of bio-reed and bio-ceramic as suitable bed media in the construction of artificial wetlands near livestock farms. Soils including the bed media were monitored during the evaluation for trace elements. Soil analysis results were satisfied with the Korean Soil Contamination Standard. This study showed that the up-flow constructed wetland was feasible to treat the effluent livestock wastewater treatment facility.

Study on the Inlet Shape of a Selective Catalyst Reduction System with an Integrated Bypass Unit for Ships (Bypass 일체형 선박용 탈질설비의 입구형태에 대한 연구)

  • Ha, Soo-Hyeon;Lee, Jae-Chul;Lee, Sang-Beom;Kang, Donghoon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.5
    • /
    • pp.666-674
    • /
    • 2021
  • A selective catalyst reduction system (SCR) with an integrated bypass unit is proposed. Through simulations of the SCR, variations in flow to the catalyst due to the particular shape of the bypass shutting device in the SCR are also studied. The commercial software Ansys Fluent is used to develop the simulations. For the simulations, the catalyst of the SCR is modeled using the porous media method to reduce the calculation time and number of meshes, which is necessary because of the detailed modeling of the catalyst. Simulations are performed based on changes to the entrance angle to the catalyst and the size of the bypass shutting device. Finally, simulation results are used to compare and analyze the average velocity and uniformity of the flow to the catalyst.

Flow Analysis of the Tube Type Marine Auto-Backwashing Fuel Oil Filter (튜브형 박용 자동역세 연료유 필터 내부의 유동해석)

  • Yang, Jang-Sik;Kim, Bong-Hwan;Park, Young-Bum
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.4
    • /
    • pp.578-587
    • /
    • 2009
  • In this paper, the characteristics of incompressible flow in a tube type marine fuel oil filter have been investigated. Fluent program has been used to obtain the solutions for the problems of three-dimensional, turbulent fuel oil flow in a filtering system. The inlet flow field is assumed to be uniform. The velocity and pressure distributions were obtained using Darcy's law. The increase of inlet velocity for cleaning fuel oil may cause some problems like vibration of the filter element. It was also required to consider the distribution of cleaning velocity because the worst distribution of cleaning velocity may cause the local insufficient cleaning effect and furthermore the effective filtration area can be reduced. The simulated results show that the computer code can be successfully applied for simulation of the complex base oil flow through the porous media. This paper could be applied to the design of auto-backwashing filtering system as design factor.