• 제목/요약/키워드: Mechatronics Education

검색결과 279건 처리시간 0.02초

3D프린팅 공정 중 공기 습도에 따른 출력물의 인장 강도에 관한 연구 (A Study on Tensile Strength of the Product According to Humidity During 3D Printing Process)

  • 이송연;허용정
    • 반도체디스플레이기술학회지
    • /
    • 제20권4호
    • /
    • pp.177-181
    • /
    • 2021
  • Scaffolds protect the sensor in the body. Scaffolds are made of a bioabsorbable polymer. The polymer process is sensitive to humidity. Inside of the 3D printer has been improved to control the humidity. Specimens were produced by injection molding and 3D printer. 3D printed specimens were printed under various humidity conditions. We measured tensile strength of the injection-molded specimen and tensile strength of the 3d printing specimen. We compared tensile strength of the injection-molded specimen and tensile strength of the 3d printing specimen. Tensile strength of the injection-molded specimen is 557 kgf/cm2. We confirmed tensile strength of the specimen was highest at 741 kgf/cm2 when the humidity was 10 %. We confirmed lower the humidity, higher tensile strength of the polymer product.

반도체 플라즈마 식각 장치의 부품 가공 연구 (A Study of Machining Optimization of Parts for Semiconductor Plasma Etcher)

  • 이은영;김문기
    • 반도체디스플레이기술학회지
    • /
    • 제19권4호
    • /
    • pp.28-33
    • /
    • 2020
  • Plasma etching process employs high density plasma to create surface chemistry and physical reactions, by which to remove material. Plasma chamber includes silicon-based materials such as a focus ring and gas distribution plate. Focus ring needs to be replaced after a short period. For this reason, there is a need to find materials resistant to erosion by plasma. The developed chemical vapor deposition processing to produce silicon carbide parts with high purity has also supported its widespread use in the plasma etch process. Silicon carbide maintains mechanical strength at high temperature, it have been use to chamber parts for plasma. Recently, besides the structural aspects of silicon carbide, its electrical conductivity and possibly its enhanced life time under high density plasma with less generation of contamination particles are drawing attention for use in applications such as upper electrode or focus rings, which have been made of silicon for a long time. However, especially for high purity silicon carbide focus ring, which has usually been made by the chemical vapor deposition method, there has been no study about quality improvement. The goal of this study is to reduce surface roughness and depth of damage by diamond tool grit size and tool dressing of diamond tools for precise dimensional assurance of focus rings.

유한요소해석을 이용한 알루미나 정전척의 글라스 기판 흡착 특성 연구 (A Study on Attractive Force Characteristics of Glass Substrate Using Alumina Electrostatic Chuck by Finite Element Analysis)

  • 이재영;장경민;민동균;강재규;성기현;김혜동
    • 반도체디스플레이기술학회지
    • /
    • 제19권4호
    • /
    • pp.46-50
    • /
    • 2020
  • In this research, the attractive force of Coulomb type electrostatic chuck(ESC), which consisted of alumina dielectric, on glass substrate was studied by using the finite element analysis. The attractive force is caused by the high electrical resistance which occurs in contact region between glass substrate and dielectric layer. This research tries the simple geometrical modeling of ESC and glass substrate with air gap. The influences of the applied voltage, and air gap are investigated. When alumina dielectric with 1014 Ω·cm, 1.5 kV voltage, and 0.01 mm air gap were applied, electrostatic force in this work reached to 4 gf/㎠. This results show that the modeling of air gap is essential to derive the attractive force of the ESC.

CNN 기반 딥러닝을 이용한 인공지지체의 외형 변형 불량 검출 모델에 관한 연구 (A Study on Shape Warpage Defect Detecion Model of Scaffold Using Deep Learning Based CNN)

  • 이송연;허용정
    • 반도체디스플레이기술학회지
    • /
    • 제20권1호
    • /
    • pp.99-103
    • /
    • 2021
  • Warpage defect detecting of scaffold is very important in biosensor production. Because warpaged scaffold cause problem in cell culture. Currently, there is no detection equipment to warpaged scaffold. In this paper, we produced detection model for shape warpage detection using deep learning based CNN. We confirmed the shape of the scaffold that is widely used in cell culture. We produced scaffold specimens, which are widely used in biosensor fabrications. Then, the scaffold specimens were photographed to collect image data necessary for model manufacturing. We produced the detecting model of scaffold warpage defect using Densenet among CNN models. We evaluated the accuracy of the defect detection model with mAP, which evaluates the detection accuracy of deep learning. As a result of model evaluating, it was confirmed that the defect detection accuracy of the scaffold was more than 95%.

딥러닝 알고리즘을 이용한 3D프린팅 골절합용 판의 표면 결함 탐지 모델에 관한 연구 (A Study on Surface Defect Detection Model of 3D Printing Bone Plate Using Deep Learning Algorithm)

  • 이송연;허용정
    • 반도체디스플레이기술학회지
    • /
    • 제21권2호
    • /
    • pp.68-73
    • /
    • 2022
  • In this study, we produced the surface defect detection model to automatically detect defect bone plates using a deep learning algorithm. Bone plates with a width and a length of 50 mm are most used for fracture treatment. Normal bone plates and defective bone plates were printed on the 3d printer. Normal bone plates and defective bone plates were photographed with 1,080 pixels using the webcam. The total quantity of collected images was 500. 300 images were used to learn the defect detection model. 200 images were used to test the defect detection model. The mAP(Mean Average Precision) method was used to evaluate the performance of the surface defect detection model. As the result of confirming the performance of the surface defect detection model, the detection accuracy was 96.3 %.

SSD 테스터의 알루미늄 합금 Guide Hole의 마모에 관한 연구 (A Study on Wear of Aluminum Alloy Guide Hole in SSD Tester)

  • 함응진;김문기
    • 반도체디스플레이기술학회지
    • /
    • 제21권2호
    • /
    • pp.19-24
    • /
    • 2022
  • The purpose of this research is to determine the hardness of guide hole. A guide pin and a guide hole of SSD(Solid State Drive) tester used to mount SSD in a fixed position accurately. The guide pin and guide hole are worn by friction due to repeated operation, and the wear is concentrated on the guide hole made of weak material rather than the guide pin made of relatively strong material. Because of that reason, it is often overdesigned in the design stage because it can lose its function. If the guide hole is made soft, the manufacturing cost will decrease, but the accuracy will decrease due to wear caused by repeated friction. If the guide hole is manufactured excessively, the manufacturing process becomes complicated and the manufacturing cost increases. It is essential to design a guide hole, but since there is no standard or verified data that can be referenced, it is difficult to design. Experimental device which guides in the same way as the SSD tester is used for this research, and three types of anodizing state are experimented for different hardness. Also, weight of COK(Change over Kit) were analyzed by measuring the wear amount and state of the guide hole according to the number of repeated attachment and detachment.

챔버 내부의 질소 농도에 따른 3D프린팅 출력물의 인장 강도에 관한 연구 (A Study on Tensile Strength of the 3D Printing Product According to the Nitrogen Concentration of Chamber Inside)

  • 이송연;허용정
    • 반도체디스플레이기술학회지
    • /
    • 제21권1호
    • /
    • pp.103-107
    • /
    • 2022
  • Scaffolds are the structures that safely protect sensors in various parts of the body. Because of scaffolds must protect sensors from load, the tensile strength of the scaffolds must be higher than 750 kgf/cm2. Currently, the tensile strength of scaffolds made with the 3d printer is 714 kgf/cm2. We confirm that the tensile strength of the scaffolds increase using air with high nitrogen concentration. In this study, we conducted experiments to find nitrogen concentrations in which the tensile strength of the specimen is higher than 750 kgf/cm2. The nitrogen control device and the nitrogen concentration sensor were installed in the chamber type 3d printer. The nitrogen concentration inside the 3d printer was changed by 5 % from 80 % to 100 %. Specimens of ASTM D 638 standard were produced under changed nitrogen concentration. We measured the tensile strength of specimens. We compared the tensile strength of specimens produced under each nitrogen concentration. We confirmed that when air with nitrogen concentration of 90 % was used, the tensile strength of scaffolds were 762 kgf/cm2.

증착용 정전척의 기판 크기에 따른 척킹력 및 기판 변형 특성 연구 (Study on Chucking Force and Substrate Deformation Characteristics of Electrostatic Chuck for Deposition According to Substrate Sizes)

  • 김성빈;민동균
    • 반도체디스플레이기술학회지
    • /
    • 제23권2호
    • /
    • pp.12-18
    • /
    • 2024
  • A Electrostatic chuck is a device that fixes the substrate, using the force between charges applied between two parallel plates to attract substrates such as wafers or OLED panels. Unlike mechanical suction methods, which rely on physical fixation, this method utilizes the force of electrostatics for fixation, making it important to verify the adhesion force. As the size of the substrate increases, deformations due to gravity or chucking force also increase, and the adhesion force decreases rapidly as the distance between the chuck and the substrate increases. The outlook for displays is shifting from small to large OLEDs, necessitating consideration of substrate deformations. In this paper, to confirm the deformation of the substrate through various patterns, a simplified 2D model using Ansys' electromagnetic field analysis program, Maxwell, and the static structural analysis program, Mechanical, was utilized to observe changes in adhesion force according to the variation in the air gap between the substrate and the chuck. Additionally, the chucking force was analyzed for the size of the substrate, and the deformation of the substrate was confirmed when gravity and chucking force act simultaneously.

  • PDF

Application of Similarity Measure for Fuzzy C-Means Clustering to Power System Management

  • Park, Dong-Hyuk;Ryu, Soo-Rok;Park, Hyun-Jeong;Lee, Sang-H.
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제8권1호
    • /
    • pp.18-23
    • /
    • 2008
  • A FCM with locational price and regional information between locations are proposed in this paper. Any point in a networked system has its own values indicating the physical characteristics of that networked system and regional information at the same time. The similarity measure used for FCM in this paper is defined through the system-wide characteristic values at each point. To avoid the grouping of geometrically distant locations with similar measures, the locational information are properly considered and incorporated in the proposed similarity measure. We have verified that the proposed measure has produced proper classification of a networked system, followed by an example of a networked electricity system.

정유압구동기(EHA)의 모델링과 제어기 설계 (Modeling and Controller Design of an Electro-Hydrostatic Actuator)

  • 허준영;김현호;이일영
    • 드라이브 ㆍ 컨트롤
    • /
    • 제12권2호
    • /
    • pp.1-6
    • /
    • 2015
  • Recently, the Electro-Hydrostatic Actuator(EHA) has been developed as a result of research on energy saving. EHA is usually composed of a direct driven pump from an electric motor and is available to control cylinder displacement or velocity with high efficiency. In addition, it has the advantage of compactness, minimum leakage and availability of decentralized control. In this study, an EHA system was designed to decrease the path tracking error and manufactured for test. The linearization method provided in AMESim software was used to derive the model of EHA system. The derived model was applied to design the PI-D controller to effectively overcome the disturbance. The effectiveness of this controller was verified by further testing.