• 제목/요약/키워드: Mechatronic system

검색결과 154건 처리시간 0.023초

적분 가변구조제어기를 갖는 전기유압 서보시스템의 속도제어 (Velocity Control of an Electro-hydraulic Servo System with Integral Variable Structure Controller)

  • 허준영
    • 드라이브 ㆍ 컨트롤
    • /
    • 제18권4호
    • /
    • pp.52-58
    • /
    • 2021
  • The variable structure controller is designed such that in sliding mode, the system moves along the switching plane in the vicinity of the switching plane, thus it is robust because it is not affected by the parameter fluctuations of the plant. However, a controller based on a variable structure may not meet the desired performance when it is commanded to track any input or is exposed to disturbances. This study proposes a sliding mode controller that follows the IVSC (Integral Variable Structure Control) approach with ELO (Extended Luenberger observer) to solve this problem. The proposed sliding mode control is applied to the velocity control of the hydraulic motor. The sliding plane was determined by the pole placement, and the control input was designed to ensure the existence of the sliding mode. The feasibility of modeling and controller are reviewed by comparing with conventional proportional-integral control through computer simulation using MATLAB software and experimenting on the cases of significant plant parameter fluctuations and disturbances.

열펌프-잠열축열 시스템 온실에서 토양의 열저장 및 방열 특성 (Thermal Energy Storage and Release Characteristics of the Soil in the Greenhouse Equipped with Heat Pump and Latent Heat Storage System)

  • 노정근;송현갑
    • Journal of Biosystems Engineering
    • /
    • 제27권1호
    • /
    • pp.39-44
    • /
    • 2002
  • In order to obtain the information of bio-environment control, the thermal characteristics of soil in the greenhouse heated by the heat pump and latent heat storage system were experimentally analyzed. The experimental systems were composed of the greenhouse with a heat pump and a latent heat storage system (system I), the greenhouse with a heat pump (system II), the greenhouse with a latent heat storage system (system III), and the greenhouse without auxiliary heating system (system IV). The thermal characteristics experimentally analyzed in each system were temperature of soil layers, soil heat storage and release, soil heat capacity and soil heat storage ratio. The results could be summarized as follows. 1. Time to reach the highest temperature at 20cm deep in soil layers of the crop routs in case of system I was shown to be delayed by 6 hours in comparison to the time of the highest temperature at the soil surface. 2. In the clear winter days, the stored heat capacity values fur the system I and the system II were shown to be 22.3% and 11.0% higher than the released heat capacity respectively, and the stored heat capacity values for the system III and the system IV were shown to be 6.2% and 29.6% lower than the released heat capacity respectively This confirms that the system I provided the best heat storage effect. j. The heat quantity values stored or released were shown to be highest at 5 cm depth of soil layers. And it was reduced with increasing of depth of soil layers until 20 cm and was not changed under the soil layer of 20 cm depth. 4. The heat absorption rates of soil, the ratio between supplied and stored heat energy, fur both the system I and system II were lower than 23%.

축산 돈사에서 온실가스 측정 방법에 대한 연구 (Measurements of Greenhouse Gas from the Manure in the Piggery)

  • 감동환;박규현;최동윤;정만순;민병로;이대원;김진경
    • 한국축산시설환경학회지
    • /
    • 제17권3호
    • /
    • pp.155-162
    • /
    • 2011
  • 기후변화협약 대응을 위해 IPCC 온실가스 인벤토리 가이드라인에 따라 축산분야 온실가스인 $CH_4$, $N_2O$가스의 배출량을 평가하고 배출계수를 산출하여 국가 Database 확보 및 측정기준을 제시하기 위하여 본 연구를 수행하였다. 본 연구에서는 돈사 슬러리 피트에 샘플링 챔버를 설치 운영하기 위해 돈분뇨위에 띄울 수 있는 반구형태의 플로팅 챔버(Open chamber method or flow-through steady-state)를 고안 제작하였다. Open chamber method의 특성상 외부의 공기를 일정한 제어를 통해 챔버내로 유입시켜 돈사 슬러리에서 발생된 가스를 희석하고 정상상태의 최적조건에서 발생된 가스의 일정량을 제어하여 포집하는 장치로 시스템을 구성하였다. 돈분뇨 슬러리에서 온실가스 발생 특성상 돈사 내부에 위치에 따라 10개의 챔버를 투입하여 Data의 신뢰성을 갖출 수 있게 하였다. 유입유량을 $5{\sim}9{\ell}/min$, 포집유량을 $1{\ell}/min$으로 변경하면서 포집된 가스를 GC/ECD를 통해 분석하였고 챔버로 유입되는 공기가 슬러리 표면을 직접 접촉하지 않는 방법으로 기구를 구성하고 잉여 공급공기는 챔버 상부를 통해 외부로 배출하는 방법으로 최적조건의 정상상태 온실가스를 샘플링 할 수 있었다. 포집 가스를 GC/ECD 분석결과 $N_2O$ 가스의 배출형태는 대기중의 신선한 공기에 포함된 $N_2O$ 농도와 돈사 10곳의 샘플링 가스 시료의 농도를 볼 때 오차 범위 안의 농도로 슬러리 돈사내 분뇨에서는 $N_2O$의 발생은 없다고 판단된다. $CH_4$ 가스 발생량은 $0.15{\sim}1.02mg/m^2{\cdot}s$로 나타났다.

Automatic Blood Pressure Control Using PI Controller with $H_{\infty}$ Loop-Shaping

  • Han, Jeong-Yup;Lee, Sang-Kyung;Park, Hong-Bae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.326-329
    • /
    • 2004
  • In this paper, we show a new form of blood pressure controller combined PI control with $H_{\infty}$ loop-shaping. Hypertensive patients or post-operative patients need to maintain normally blood pressure. Exact regulation of blood pressure is needed for maintaining variable blood pressure of preventing complications. The regulation of blood pressure is achieved by injecting drugs, and usually sodium nitroprusside is used as those kinds of drugs. It is necessary to control the infusion rate sodium-nitroprusside carefully to achieve the desired blood pressure. It has been known that regulation of blood pressure by automatic controller is more effective than regulation of blood pressure by human operators. The control of blood pressure has many constraints and uncertainties. Most of biological system has the time-varying variables and the side effects such as increased risk of sepsis and organ failure. To solve such a problem, we design a new robust PI controller using $H_{\infty}$ loop-shaping to decrease noise effects that come out from human body and errors for time delay. The system with designed controller shows more stable control of mean blood pressure and more robust performance for uncertainties. Validation methods for the control performance are confirmed to computer simulations.

  • PDF

Effective and Reliable Speed Control of Permanent Magnet DC (PMDC) Motor under Variable Loads

  • Tuna, Murat;Fidan, Can Bulent;Kocabey, Sureyya;Gorgulu, Sertac
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권5호
    • /
    • pp.2170-2178
    • /
    • 2015
  • This paper presents the effective and reliable speed control of PMDC motors under variable loads and reference speeds. As is known DC motors are more preferred in industrial practices. This is that, the PMDC motors don’t require brush and commutator care and to increase in torque per motor depending on developments in power electronics. In this study, proportional-integral controller (PI) and fuzzy logic controller (FL) have been designed for speed control of PMDC motor. In the design of these controllers, characteristics such as minimum overrun time, response time to the load, settling time and ideal rise time have been taken into consideration for better stability performance. In this design, the best system response was searched by examining the effect of different defuzzification methods onto the fuzzy logic system response. In conclusion, it has been seen that FL controller has a better performance for variable speed-load control of PMDC motor compared to PI controller.

A Measurement System for 3D Hand-Drawn Gesture with a PHANToMTM Device

  • Ko, Seong-Young;Bang, Won-Chul;Kim, Sang-Youn
    • Journal of Information Processing Systems
    • /
    • 제6권3호
    • /
    • pp.347-358
    • /
    • 2010
  • This paper presents a measurement system for 3D hand-drawn gesture motion. Many pen-type input devices with Inertial Measurement Units (IMU) have been developed to estimate 3D hand-drawn gesture using the measured acceleration and/or the angular velocity of the device. The crucial procedure in developing these devices is to measure and to analyze their motion or trajectory. In order to verify the trajectory estimated by an IMU-based input device, it is necessary to compare the estimated trajectory to the real trajectory. For measuring the real trajectory of the pen-type device, a PHANToMTM haptic device is utilized because it allows us to measure the 3D motion of the object in real-time. Even though the PHANToMTM measures the position of the hand gesture well, poor initialization may produce a large amount of error. Therefore, this paper proposes a calibration method which can minimize measurement errors.

고속.지능형 마이크로머시닝을 위한 진단시스템 및 특성평가 (Development of Diagnosis System for Intelligent High-Speed Micro-Machining and Evaluation of Micro-Machining Characteristics)

  • 김흥배;이우영;최성주
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.993-998
    • /
    • 1997
  • The advanced technology of micro-machining is starting to penetrate our lives. This technology, with which it is possible to make micro-structures by means of processing on the order of nm (micrometer = 1/1,000 mm) or less, is realizing machines that were only part of our wildest imagination. However, the fact is that many issues remain in the quest for a variety of applications. With the advent of computing technologies, information technologies, and telecommunications technologies, we foresee the need for new approaches in design, process, and the use of materials, technologies, and people in a globalized manufacturing enterprise. A new thinking paradigm is needed to focus on quality of service on the products we design and manufacture. Factories in different regions need to be co-ordinated through use of the state-of-the-art information on productivity, diagnostics, and service evaluation of manufacturing systems could be shared among different locations and partners. In this research, We develope the internet based Diagnosis system for micro machining and evaluate its characteristics by using mechatronic sensor like Dynamometer, acoustic emission, Acceleration sensor, micro phone, vision, infra-red thermometer.

  • PDF

자기 베어링 시스템을 가진기로 이용한 스퀴즈 필름 댐퍼의 동특성 계수 규명 (Identification of Dynamic Characteristics of Squeeze Film Damper Using Active Magnetic Bearing System as an Exciter)

  • 김근주;이종원
    • 한국소음진동공학회논문집
    • /
    • 제13권7호
    • /
    • pp.508-516
    • /
    • 2003
  • The dynamic characteristics of an ell-lubricated, short squeeze film damper (SFD) with a central feeding groove are derived based on a theoretical analysis considering the effect of a groove, and identified experimentally using an Active Magnetic Bearing (AMB) system as an exciter. In order to get the theoretical solution, the fluid film forces of the grooved SFD are analytically derived so that the dynamic coefficients of the SFD can be expressed in terms of its design parameters. For the experimental validation of the analysis, a test rig using an AMB as an exciter is proposed. As an exciter. the AMB represents a mechatronic device to levitate and position the test Journal without any mechanical contact, to generate relative motions of the Journal inside the tested SFD and to measure the generated displacements during experiments with fairly high accuracy. Using this test rig, experiments are extensively conducted with various values of clearance, which Is one of the most important design parameters. in order to investigate its effect on the dynamic characteristics and the performance of the SFD. Damping and Inertia coefficients of the SFD that are experimentally Identified are compared with the analytical results to demonstrate the effectiveness of the applied analysis. It Is also shown that the AMB is an ideal device for tests of SFDs.

FFT analysis of load data during field operations using a 75-kW agricultural tractor

  • Ryu, Myong-Jin;Chung, Sun-Ok;Kim, Yong-Joo;Lee, Dae-Hyun;Choi, Chang-Hyun;Lee, Kyeong-Hwan
    • 농업과학연구
    • /
    • 제40권1호
    • /
    • pp.53-59
    • /
    • 2013
  • Analysis of load data during field operations is highly important for optimum design of power drive lines for agricultural tractor. Objective of the paper was to analyze field load data using FFT to determine frequency and the energy levels of meaningful cyclic patterns. Rotary tillage, plowing, baling, and wrapping operations were selected as major field operations of agricultural tractor. An agricultural tractor with power measurement system was used. The tractor was equipped with strain-gauge sensors to measure torque of four driving axles and a PTO axle, speed sensors to measure rotational speed of the driving axles and an engine shaft, pressure sensors to measure pressure of hydraulic pumps, an I/O interface to acquire the sensor signals, and an embedded system to calculate power requirement. In rotary tillage, calculated frequency was decreased as travel speed increased. In baler operation, calculated frequency was increased as PTO speed was increased. The calculated peak frequency levels and expected levels were similar. Results of the study would provide information on power utilization patterns and on better design of power drive lines.

POSITION RECOGNITION AND QUALITY EVALUATION OF TOBACCO LEAVES VIA COLOR COMPUTER VISION

  • Lee, C. H.;H. Hwang
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 2000년도 THE THIRD INTERNATIONAL CONFERENCE ON AGRICULTURAL MACHINERY ENGINEERING. V.III
    • /
    • pp.569-577
    • /
    • 2000
  • The position of tobacco leaves is affluence to the quality. To evaluate its quality, sample leaves was collected according to the position of attachment. In Korea, the position was divided into four classes such as high, middle, low and inside positioned leaves. Until now, the grade of standard sample was determined by human expert from korea ginseng and tobacco company. Many research were done by the chemical and spectrum analysis using NIR and computer vision. The grade of tobacco leaves mainly classified into 5 grades according to the attached position and its chemical composition. In high and low positioned leaves shows a low level grade under grade 3. Generally, inside and medium positioned leaf has a high level grade. This is the basic research to develop a real time tobacco leaves grading system combined with portable NIR spectrum analysis system. However, this research just deals with position recognition and grading using the color machine vision. The RGB color information was converted to HSI image format and the sample was all investigated using the bundle of tobacco leaves. Quality grade and position recognition was performed through well known general error back propagation neural network. Finally, the relationship about attached leaf position and its grade was analyzed.

  • PDF