• Title/Summary/Keyword: Mechanization model

Search Result 60, Processing Time 0.024 seconds

Study on the Swine Farming Facilities by Survey for the Development of the Optimum Production System Models (최적화 생산시스템 모델 개발을 위한 양돈시설의 조사 연구)

  • 장동일;이봉덕;조한근;장홍희
    • Journal of Animal Environmental Science
    • /
    • v.2 no.1
    • /
    • pp.1-11
    • /
    • 1996
  • This study was conducted to analyze the present status and the levels of mechanization and automation for raising, feeding, water supply, propagation, health management, ventilation and heat control, data analysis, and etc, and to establish the guide of the future study on development of the optimum production system models of swine facility from the results of this analysis. The scheme of the future study on the development of the optimum production system model of swine facility was established as follows : 1. A Korean and environmental control type slatted windowless swine housing model would be developed according to the following basis : \circled1 Boars, gilts and sows, delivery sows should be raised individually and piglets, growing pigs, and finishing pigs should be raised in group. \circled2 The arrangement of furrowing house were two rows of furrowing crates facing the center aisle. 2. The environmental control system and waste management system that are suitable to Korean and environmental control type slatted windowless swine housing model would be developed. 3. An electronic identification device would be developed. 4. The automatic individual wet feeding system by electronic identification device and computers would be developed. 5. The individual management system would be developed, which could manage individually the breeding pigs by the electronic identification device. 6. An expert system would be developed, which could manage the health and data base of pigs.

  • PDF

Prediction of Welding Deformation for Fillet Welded Girder and Stringer Structure (필릿 용접된 거더와 종통재 구조의 용접변형 예측)

  • 김상일
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.2
    • /
    • pp.57-62
    • /
    • 2003
  • The block assembly of ship consists of a certain type of heat processes such as cutting, bending, welding, residual stress relaxation and fairing. The residual deformation due to welding is inevitable at each assembly stage. The geometric inaccuracy caused by the welding deformation tends to preclude the introduction of automation and mechanization and needs the additional man-hours for the adjusting work at the following assembly stage. To overcome this problem, a distortion control method should be applied. For this purpose, it is necessary to develop an accurate prediction method which can explicitly account for the influence of various factors on the welding deformation. The validity of the prediction method must be also clarified through experiments. This paper proposes a simplified analysis method to predict the welding deformation of panel block structure. For this purpose, a simple prediction model for fillet welding deformations has been derived based on numerical and experimental results through the regression analysis. On the basis of these results, the simplified analysis method has been applied to some examples to show its validity.

Measurement Uncertainty calculation for improving test reliability of Agricultural tractor ROPS Test (농업용트랙터 ROPS 시험의 신뢰성 향상을 위한 측정불확도 추정)

  • Ryu Gap Lim;Young Sun Kang;Taek Jin Kim
    • Journal of Drive and Control
    • /
    • v.20 no.1
    • /
    • pp.34-40
    • /
    • 2023
  • The agricultural tractor ROPS test method according to OECD code 4 is a test to assess whether the driver's safety area can be secured when a tractor overturns, and reliability should be ensured. In this study, a model formula and procedure for calculating measurement uncertainty expressing reliability in the field of agricultural machinery testing were established according to the ISO/IEC Guide 98-3:2008. The characteristics of the ROPS test device were assessed and repeated tests were performed, and the were used as factors to calculate the measurement uncertainty. As a result of repeated tests, the accuracy was higher than 1.9 % in all load directions; thus, they were, applied to calculate the type A standard uncertainty. The final expanded uncertainty was calculated within the range of less than ± 7.76 kN of force and ± 6.96 mm of deformation in all load directions.

Relationship Between Farm Land Structure and Machine Efficiency

  • Singh, Gajendra;Ahn, Duck-Hyun
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.119-128
    • /
    • 1993
  • Effective machine capacity is affected by the physical and geometrical conditions of the fields. In the small and scattered farmland structure field efficiency is greatly influenced by plot geometry. In this paper, a method for estimating field efficiency and effective machine capacity was developed . The developed method was applied to Korean paddy cultivation. Various time elements related to farm operations for small and scattered plots are discussed in this paper . Available working time is divided into two parts, viz. the preparation time for machine operation and actual working time. Two kinds of machine efficiencies, namely , Machine Efficiency 1, applicable on a single large plot or set of well consolidated plots ; and Machine Efficiency 2, applicable on small and scattered multiple plots, are considered. Based assumptions made and steps followed to construct the model are discussed. Effective capacity of each machine based on different plot geometries are calculated y the model. Machine efficiency on a single plot increases with increase in the dimension of longer side of the plot . Low speed, low theoretical capacity machines have higher machine efficiency which is only slightly influenced by plot geometry. As plot geometry is improved , the machine efficiency of high speed, high capacity machines increases rapidly. The effects of short side length and plot size on machine efficiency on a single plot depend on the type of farm operation. For a particular plot shape, as plot size increases, machine efficiency on multiple plots increases rapidly. The effects of consolidation on machine efficiency is highly significant if the plot size is small and/or machine size is large.

  • PDF

A Survey on the Machanization for Beef Cattle Farm in West Chung-Nam (충남 서부지역의 육우 축산 기계화 실태조사)

  • 이승기;권순홍
    • Journal of Animal Environmental Science
    • /
    • v.4 no.2
    • /
    • pp.97-104
    • /
    • 1998
  • In order to advise how to solve the problems and suggest on the mechanization of beef farm, the facilities and equipment for feeding and supplying water to the animals and transporting manure, and farm machineries of sixty-seven beef cattle farms in western Chungnam Province were surveyed. The results are as follows; 1. The proportions of number of heads per farm for above 70, 50∼70, 30∼50, 10∼30 and below 10 heads were 26, 18, 29, 13 and 13, respectively. The farms with the annual income more than 30 million won are consisted of 67.6% of the farms surveyed which showed to be higher than national average. 2. Only 19% of farms had automatic feeding system. Water was supplied by water cup(45%), opening and shutting water tab(27.6%) and bucket. 3. Cattle manure was transported by manpower (46%) by loader (34%) and by gravitational flow (14%). Most of manure(97%) was composted after treatment of drying or piling up outside. 4. More instruction and education were required because of the insufficient routine checking and fixing for farming machines, and unsystematic education for learning skills. 5. 65% of farms felt unsatisfied about after service(A/S) for their machinery. The main reason why the farmers were not satisfied was that it took too much time to be repaired. 6. When the farms purchased facilities, equipment and machinery, they did not analyze economic value of them and keep a diary. To make effective use of machines, the most available model for purchasing and managing of machines must be developed and applied to various scales of management.

  • PDF

Soil Physical Properties and Traction Characteristics of Non-tilled Paddy Field (경운 작업 전 논토양의 물리성 및 견인력 특성)

  • Park, Won-Yeop;Kim, Lee-Yul;Kim, Jeong-Dong;Lee, Kyou-Seung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.6
    • /
    • pp.367-375
    • /
    • 2003
  • The aim of this study was to investigate the soil physical properties and the traction characteristics of paddy field before tillage by a computer simulation. Soil physical properties, such as soil moisture content, bulk density, soil hardness, and soil texture were measured in the twelve rice production area. Mathematical model based on dimensional analysis which include soil physical properties and vehicle factors was used for the computer simulation. Most of the soil texture of the investigated area was silty loam, loam and silty clay loam. Soil moisture content ranged between 20 and 40% mostly. Soil bulk density was in the range of 1,500 to $1,700kg\;m^{-3}$. Soil hardness ranged between 2 to $12kg\;cm^{-2}$ mostly. Soil hardness incorporates the effects of many soil physical properties such as moisture content, texture and bulk density, and so the range of soil hardness was greater than that of any other physical properties. The predicted net traction was in the range of 70 to 1,500 kgf depending on the area, but it was above 1,000 kgf for most of the investigated area. Thus it was concluded that 50 HP tractor can pull the four row moldboard plow considering the conventional tillage depth and width. But for the soft soil area such as Andong and Namyang, tractor itself may have mobility problem and show high slip during plowing operation.

Using Balanced Scorecard to Explore Learning Performance of Enterprise Organization

  • Chiu, Chung-Ching;Tsai, Chih-Hung;Chung, Yi-Chan
    • International Journal of Quality Innovation
    • /
    • v.8 no.1
    • /
    • pp.40-75
    • /
    • 2007
  • In the early industrial age which with high intensity of machine and labor, using financial measurement index was good enough to tie in company's mechanization and philosophy of management and been in efficiency. But being comply with "New Economic age," a new economic environment is full of knowledge and information, the enterprise competition had changed from tangible assets, plants to intangible innovation ability of knowledge. As recognizing the new tendency by enterprise, they value gradually the growth and influence from learning. Practice of organization learning not only needs firm structure and be in coordination with both hardware and software, but also needs an affect measurement model to offer enterprise to estimate learning performance. It's a good instrument of financial performance measure mold in the past years, But it's for measuring the past, couldn't formulate enterprise trend to future, hard to estimate investment for future, such as development of products, organization learning, knowledge management etc, as which intangible assets and knowledge ability just the key factors of being win around competition environment in the future. In 1992, Kaplan and Norton brought up Balance Scorecard (BSC) on Harvard Business Review, as an instrument helping enterprise to measure performance, which is being considered to be a most influence management instrument. It added non-financial index such as customer, internal process and learning growth besides traditional financial index, as offering enterprise an index to measure and manage intangible assets and intellectual property. As being aware of organization learning is hard to be ignored in the new economic age, this research is based on learning and growth of BSC, and citing one national material company try to let the most difficult measurement performance of organization learning, to be estimate through BSC, analyze of factor and individual case, to discuss the company how to make the related strategy and vision of organization learning to develop learning and growth of the structure of BSC, subject the matter of out put factors to be discussed, and measure the outcomes as a result of research. The research affect offers (1) the base implement procedure of carrying out BSC; (2) the reference of formulating measurement index while enterprise using BSC to estimate performance of organization learning; (3) the possibility bottleneck maybe forcing while carrying out BSC, to be an improvement or preventive for enterprise.

Study on the Travel and Tractive Characteristics of The Two-Wheel Tractor on the General Slope Ground (II)-Dynamic Side-overturn of the Tiller-trailer System- (동력경운기의 경사지견인 및 주행특성에 관한 연구 (II)-동력경운기-트레일러계의 욍골동 및 동횡전도한계)

  • 송현갑;정창주
    • Journal of Biosystems Engineering
    • /
    • v.3 no.1
    • /
    • pp.1-19
    • /
    • 1978
  • Power tiller is a major unit of agricultural machinery being used on farms in Korea. About 180.000 units are introduced by 1977 and the demand for power tiller is continuously increasing as the farm mechanization progress. Major farming operations done by power tiller are the tillage, pumping, spraying, threshing, and hauling by exchanging the corresponding implements. In addition to their use on a relatively mild slope ground at present, it is also expected that many of power tillers could be operated on much inclined land to be developed by upland enlargement programmed. Therefore, research should be undertaken to solve many problems related to an effective untilization of power tillers on slope ground. The major objective of this study was to find out the travelling and tractive characteristics of power tillers being operated on general slope ground.In order to find out the critical travelling velocity and stability limit of slope ground for the side sliding and the dynamic side overturn of the tiller and tiller-trailer system, the mathematical model was developed based on a simplified physical model. The results analyzed through the model may be summarized as follows; (1) In case of no collision with an obstacle on ground, the equation of the dynamic side overturn developed was: $$\sum_n^{i=1}W_ia_s(cos\alpha cos\phi-{\frac {C_1V^2sin\phi}{gRcos\beta})-I_{AB}\frac {v^2}{Rr}}=0$$ In case of collision with an obstacle on ground, the equation was: $$\sum_n^{i=1}W_ia_s\{cos\alpha(1-sin\phi_1)-{\frac {C_1V^2sin\phi}{gRcos\beta}\}-\frac {1}{2}I_{TP} \( {\frac {2kV_2} {d_1+d_2}\)-I_{AB}{\frac{V^2}{Rr}} \( \frac {\pi}{2}-\frac {\pi}{180}\phi_2 \} = 0 $$ (2) As the angle of steering direction was increased, the critical travelling veloc\ulcornerities of side sliding and dynamic side overturn were decreased. (3) The critical travelling velocity was influenced by both the side slope angle .and the direct angle. In case of no collision with an obstacle, the critical velocity $V_c$ was 2.76-4.83m/sec at $\alpha=0^\circ$, $\beta=20^\circ$ ; and in case of collision with an obstacle, the critical velocity $V_{cc}$ was 1.39-1.5m/sec at $\alpha=0^\circ$, $\beta=20^\circ$ (4) In case of no collision with an obstacle, the dynamic side overturn was stimu\ulcornerlated by the carrying load but in case of collision with an obstacle, the danger of the dynamic side overturn was decreased by the carrying load. (5) When the system travels downward with the first set of high speed the limit {)f slope angle of side sliding was $\beta=5^\circ-10^\circ$ and when travels upward with the first set of high speed, the limit of angle of side sliding was $\beta=10^\circ-17.4^\circ$ (6) In case of running downward with the first set of high speed and collision with an obstacle, the limit of slope angle of the dynamic side overturn was = $12^\circ-17^\circ$ and in case of running upward with the first set of high speed and collision <>f upper wheels with an obstacle, the limit of slope angle of dynamic side overturn collision of upper wheels against an obstacle was $\beta=22^\circ-33^\circ$ at $\alpha=0^\circ -17.4^\circ$, respectively. (7) In case of running up and downward with the first set of high speed and no collision with an obstacle, the limit of slope angle of dynamic side overturn was $\beta=30^\circ-35^\circ$ (8) When the power tiller without implement attached travels up and down on the general slope ground with first set of high speed, the limit of slope angle of dynamic side overturn was $\beta=32^\circ-39^\circ$ in case of no collision with an obstacle, and $\beta=11^\circ-22^\circ$ in case of collision with an obstacle, respectively.

  • PDF

Rapid Rural-Urban Migration and the Rural Economy in Korea (한국(韓國)의 급격(急激)한 이촌향도형(離村向都型) 인구이동(人口移動)과 농촌경제(農村經濟))

  • Lee, Bun-song
    • KDI Journal of Economic Policy
    • /
    • v.12 no.3
    • /
    • pp.27-45
    • /
    • 1990
  • Two opposing views prevail regarding the economic impact of rural out-migration on the rural areas of origin. The optimistic neoclassical view argues that rapid rural out-migration is not detrimental to the income and welfare of the rural areas of origin, whereas Lipton (1980) argues the opposite. We developed our own alternative model for rural to urban migration, appropriate for rapidly developing economies such as Korea's. This model, which adopts international trade theories of nontraded goods and Dutch Disease to rural to urban migration issues, argues that rural to urban migration is caused mainly by two factors: first, the unprofitability of farming, and second, the decrease in demand for rural nontraded goods and the increase in demand for urban nontraded goods. The unprofitability of farming is caused by the increase in rural wages, which is induced by increasing urban wages in booming urban manufacturing sectors, and by the fact that the cost increases in farming cannot be shifted to consumers, because farm prices are fixed worldwide and because the income demand elasticity for farm products is very low. The demand for nontraded goods decreases in rural and increases in urban areas because population density and income in urban areas increase sharply, while those in rural areas decrease sharply, due to rapid rural to urban migration. Given that the market structure for nontraded goods-namely, service sectors including educational and health facilities-is mostly in monopolistically competitive, and that the demand for nontraded goods comes only from local sources, the urban service sector enjoys economies of scale, and can thus offer services at cheaper prices and in greater variety, whereas the rural service sector cannot enjoy the advantages offered by scale economies. Our view concerning the economic impact of rural to urban migration on rural areas of origin agrees with Lipton's pessimistic view that rural out-migration is detrimental to the income and welfare of rural areas. However, our reasons for the reduction of rural income are different from those in Lipton's model. Lipton argued that rural income and welfare deteriorate mainly because of a shortage of human capital, younger workers and talent resulting from selective rural out-migration. Instead, we believe that rural income declines, first, because a rapid rural-urban migration creates a further shortage of farm labor supplies and increases rural wages, and thus reduces further the profitability of farming and, second, because a rapid rural-urban migration causes a further decline of the rural service sectors. Empirical tests of our major hypotheses using Korean census data from 1966, 1970, 1975, 1980 and 1985 support our own model much more than the neoclassical or Lipton's models. A kun (county) with a large out-migration had a smaller proportion of younger working aged people in the population, and a smaller proportion of highly educated workers. But the productivity of farm workers, measured in terms of fall crops (rice) purchased by the government per farmer or per hectare of irrigated land, did not decline despite the loss of these youths and of human capital. The kun having had a large out-migration had a larger proportion of the population in the farm sector and a smaller proportion in the service sector. The kun having had a large out-migration also had a lower income measured in terms of the proportion of households receiving welfare payments or the amount of provincial taxes paid per household. The lower incomes of these kuns might explain why the kuns that experienced a large out-migration had difficulty in mechanizing farming. Our policy suggestions based on the tests of the currently prevailing hypotheses are as follows: 1) The main cause of farming difficulties is not a lack of human capital, but the in­crease in production costs due to rural wage increases combined with depressed farm output prices. Therefore, a more effective way of helping farm economies is by increasing farm output prices. However, we are not sure whether an increase in farm output prices is desirable in terms of efficiency. 2) It might be worthwhile to attempt to increase the size of farmland holdings per farm household so that the mechanization of farming can be achieved more easily. 3) A kun with large out-migration suffers a deterioration in income and welfare. Therefore, the government should provide a form of subsidization similar to the adjustment assistance provided for international trade. This assistance should not be related to the level of farm output. Otherwise, there is a possibility that we might encourage farm production which would not be profitable in the absence of subsidies. 4) Government intervention in agricultural research and its dissemination, and large-scale social overhead projects in rural areas, carried out by the Korean government, might be desirable from both efficiency and equity points of view. Government interventions in research are justified because of the problems associated with the appropriation of knowledge, and government actions on large-scale projects are justified because they required collective action.

  • PDF

Thin Layer Drying and Quality Characteristics of Ainsliaea acerifolia Sch. Bip. Using Far Infrared Radiation (원적외선을 이용한 단풍취의 박층 건조 및 품질 특성)

  • Ning, Xiao Feng;Li, He;Kang, Tae Hwan;Lee, Jun Soo;Lee, Jeong Hyun;Ha, Chung Su
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.6
    • /
    • pp.884-892
    • /
    • 2014
  • The purpose of this study was to investigate the drying characteristics and drying models of Ainsliaea acerifolia Sch. Bip. using far-infrared thin layer drying. Far-infrared thin layer drying test on Ainsliaea acerifolia Sch. Bip. was conducted at two air velocities of 0.6 and 0.8 m/sec, as well as three drying temperatures of 40, 45, and $50^{\circ}C$ respectively. The drying models were estimated using coefficient of determination and root mean square error. Drying characteristics were analyzed based on factors such as drying rate, leaf color changes, antioxidant activity, and contents of polyphenolics and flavonoids. The results revealed that increases in drying temperature and air velocity caused a reduction in drying time. The Thompson model was considered suitable for thin layer drying using far-infrared radiation for Ainsliaea accerifolia Sch. Bip. Greenness and yellowness values decreased and lightness values increased after far-infrared thin layer drying, and the color difference (${\Delta}E$) values at $40^{\circ}C$ were higher than those at $45^{\circ}C$ and $50^{\circ}C$. The antioxidant properties of Ainsliaea acerifolia Sch. Bip. decreased under all far-infrared thin layer drying conditions, and the highest polyphenolic content (37.9 mg/g), flavonoid content (22.7 mg/g), DPPH radical scavenging activity (32.5), and ABTS radical scavenging activity (31.1) were observed at a drying temperature of $40^{\circ}C$ with an air velocity of 0.8 m/sec.