• Title/Summary/Keyword: Mechanical-hydraulic type

Search Result 262, Processing Time 0.04 seconds

The Design of Servo Control Mechanism for Swash Plate Type Axial Piston Pump (사판식 피스톤 펌프 서보제어기구 설계)

  • 노종호;함영복;윤소남;최병오
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.741-744
    • /
    • 2002
  • The closed circuit pump is applied to control rotating speed and direction of hydraulic motor in hydrostatic transmission. To development of this pump, first of all the servo control regulator has to be designed. Mechanical-hydraulic type servo control mechanism is excellent to be compared with electronic-hydraulic type servo control valve to reliability and economy. In this paper to development positive and negative variable displacement type servo regulator, the hydro-mechanical servo control mechanism is calculated and designed with force balance of pilot piston and position feedback of servo piston.

  • PDF

Development of a Simulator of Vehicle Equipped with Mechanical Transmission and Hydraulic Accumulator Type-Braking Energy Regeneration System (유압 축압기식 제동에너지 희생시스템을 장착한 기계식 변속기 차량의 모의시험기 개발)

  • 이성래
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.5
    • /
    • pp.180-186
    • /
    • 2004
  • The simulator of a vehicle equipped with mechanical transmission and hydraulic accumulator type-braking energy regeneration system is developed using a PC. The simulator receives the shift lever position, the accelerator pedal angle and the brake pedal angle generated by the operator using the keyboard, updates the state variables of the energy regeneration system responding to the input signals, and draws the moving pictures of the accumulator piston and pump/motor plate angle every drawing time on the PC monitor. Also, the operator can observe the shift lever position, the accel pedal angle, brake pedal angle, pressures of accumulators, vehicle speed, hydraulic torque, engine torque and air brake torque representing the operation of braking energy regeneration system through the PC monitor every drawing time. The simulator can be a very useful tool to design and improve the braking energy regeneration system.

The Hydraulic System Modeling and Analysis of the Clutch Direct Control of an Automatic Transmission for a Forklift Truck (지게차 자동변속기의 클러치 직접 제어 유압 시스템 모델링 및 해석)

  • Oh, Joo-Young;Lee, Guen-Ho;Song, Chang-Sub
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.1
    • /
    • pp.112-119
    • /
    • 2009
  • An automatic transmission of construction equipment is controlled by hydraulic and electronic system for doing in various functions like as shifting and operation. The shifting is operated by the engaged and disengaged clutch motion from hydraulic power. On the shifting process, suitable pressure control to the clutch is required for smooth shifting. Hydraulic control system in the automatic transmission is divided by the pilot control type and the direct control type greatly. The direct control type has an advantage than the pilot control type. Because the structure is simple, the design and the manufacture are having less troubles and the system can be maximized precision pressure control. However, the excellent performance proportional control valve should be used to achieve proper control-ability. In this study, the dynamic analysis model composing the automatic transmission and hydraulic system for forklift truck is presented to simulate the characteristics of hydraulic system about the direct control type. That model is verified the validity compared the results of the testing examination. Parameters of input signal are analyzed to reduce the output torque according to input control signal is affected in shifting characteristic.

A Study on the Internal Flow Analysis in Swash Plate Piston Pump for Marine Hydraulic Power Supply (선박 유압공급 장치용 사판식 유압 피스톤 펌프 내부 유동해석에 관한 연구)

  • Yi, Chung-Seob;Lee, Jeong-Sil;Lim, Jong-hak;Gwak, Beom-Seop;Lee, Ho Seong;Song, Chul Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.1
    • /
    • pp.34-40
    • /
    • 2022
  • In this paper, a flow analysis of a swash-plate type hydraulic piston pump installed on a hydraulic flow supply system for marine vessels is presented. A model and governing equations for computational fluid dynamics (CFD) analyses of swash-plate type hydraulic piston pumps were built, and simulation results regarding the internal flow field of the pump were obtained. By analyzing the internal flow of the swash-plate type hydraulic piston pump, we can confirm the time-dependent stroke of each piston as the pump rotates. We also verified that by analyzing the pulsating flow against the slope of the swash plate, the simulation results match well with the experimental results. The natural frequency of the system was computed to be approximately 380 Hz by applying and analyzing the fast Fourier transform (FFT) of each swash plate slope evaluated.

Study for the Energy Efficiency of Hydraulic System of Turnover-Type Sluice Gate (전도 수문용 유압장치의 에너지 효율에 관한 연구)

  • Lee, Seong-Rae
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1225-1230
    • /
    • 2007
  • The turnover-type sluice gate is typically actuated by the hydrauic system. The hydraulic system may be a open circuit type or a closed circuit type. The open circuit type hydraulic system is composed of a uni-directional pump, a directional control valve, pilot operated check valves, flow control valves, single-rod cylinders. The closed circuit type hydraulic system is composed of a bi-directional pump, pilot operated check valves, check valves, a counter balance valve, single-rod cylinders. The energy efficiencies of two hydraulic systems for the turnover-type sluice gate are compared here.

  • PDF

Comparison Analysis of Dynamic Characteristics of Servo-hydraulic Piezo-driven Injector between 3-way and Bypass-circuit Type (3-way형과 Bypass형 서보유압 피에조 인젝터의 구동특성 비교)

  • Jo, Insu;Jeong, Myoungchul;Lee, Jinwook
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.5
    • /
    • pp.169-175
    • /
    • 2013
  • CRDi technology of diesel engine was developed from in the early 2000s due to a need to increase fuel efficiency and environment care. Especially, high-pressure fuel injection system in CRDi system which has a fuel injection unit including an injector, a fuel pump and common-rail, etc. becomes possible to make the exhaust gas clean as well as power improvement. In this study, comparison of dynamic characteristics of servo-hydraulic piezo-driven injector with 3-way and bypass-circuit type was analyzed by using the AMESim code. As results of this study, it found the bypass-circuit inside servo-hydraulic piezo injector can cause a faster injection response than that of the 3-way type. Also it was shown that bypass-circuit type had better control capability due to hydraulic bypass system.

The Characteristic Analysis of the Load-sensitive Hydraulic Control System for Closed Center Type of a Wheel Loader (휠 로더용 폐회로형 부하 감응 유압 제어 시스템의 특성 해석)

  • Lee, Seung-Hyun;Song, Chang-Seop;Chung, Chun-Kuk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.9
    • /
    • pp.934-942
    • /
    • 2007
  • In this study, the characteristics of the load-sensitive hydraulic control system for closed center type of a wheel loader were analyzed using developed analysis program based on Amesim tool. From the parametric analysis, the effects of each factor were revealed. Through the simulation with varying parameters, the system parameter effects on the controllable region and the pump pressure and load pressure variations were studied. The results were compared with the experimental ones. The results and discussions of the present paper could aid in the design of a load-sensitive hydraulic control system for closed center type.

Design of the Sequentially Operated-Hydraulic Cylinders Type Sluice Gate Minimizing the Operating Force (작동력을 최소화시키는 순차작동-유압실린더식 수문의 설계)

  • Lee, Seong-Rae
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.893-898
    • /
    • 2004
  • The hydraulic cylinder is used for actuating a sluice gate which controls the volume of water in the reservoir. Generally, the one cylinder type is used to operate the sluice gate. In order to reduce the required cylinder force to operate the sluice gate significantly, the sequentially operated-hydraulic cylinders type is designed and the optimal locating points of cylinders are searched using the complex method that is one kind of constrained direct search method.

  • PDF

Multi-function Control of Hydraulic Variable Displacement Pump with EPPR Valve (전자비례감압밸브를 이용한 가변용량형 유압펌프의 다기능 제어)

  • Jung, Dong-Soo;Kim, Hyong-Eui;Kang, E-Sok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.160-170
    • /
    • 2006
  • If hydraulic pump controlled by mechanical type regulator has more than one control function, the construction of regulator will be very complicated and control performance falls drastically. It is difficult to have more than one control function for hydraulic pump controlled by electronic type hydraulic valve due to the inconsistency of controllers. This paper proposes a multi-function control technique which controls continuously flow, pressure and power by using EPPR(Electronic Proportional Pressure Reducing) valve in swash plate type axial piston pump. Nonlinear mathematical model is developed from the continuity equation for the pressurized control volume and the torque balance for the swash plate motion. To simplify the model we make the linear state equation by differentiating the nonlinear model. A reaction spring is installed in servo cylinder to secure the stability of the control system. We analyze the stability and disturbance by using the state variable model. Finally, we review the control performances of flow, pressure and power by tests using PID controller.