• Title/Summary/Keyword: Mechanical recovery system

Search Result 308, Processing Time 0.025 seconds

Experimental Study on the Performance of a Simultaneous Heating and Cooling Heat Pump in the Heat Recovery Mode (동시냉난방 열펌프의 전열회수 성능 특성에 관한 연구)

  • Choi, Jong-Min;Chung, Hyun-Joon;Joo, Young-Ju;Kang, Hoon;Kim, Yong-Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.11
    • /
    • pp.718-726
    • /
    • 2008
  • The cooling load in winter is significant in buildings and hotels because of the usage of office equipments and the high efficiency of wall insulation. Hence, the development of a multi-heat pump that can cover heating and cooling simultaneously for each indoor unit is required. In this study, the performance of a simultaneous heating and cooling heat pump was investigated in the heat recovery mode (HR mode). The system adopted a variable speed compressor using R410A with four indoor units and one outdoor unit. In the HR mode, the capacity and COP were improved as compared with those in the cooling or heating mode because the waste heat in the outdoor unit was utilized as useful heat in the indoor units. However, energy imbalance between heating and cooling capacity of each indoor unit was observed in the 2H-1C HR mode. Therefore, the performance of the system in the 2H-1C HR mode was enhanced by controlling refrigerant flow rate through the outdoor unit.

Performance Design Analysis of the Bottoming System of Combined Cycle Power Plants (복합화력발전 하부시스템의 성능설계해석)

  • Lee, B.R.;Kim, T.S.;Ro, S.T.;Shin, H.T.;Jeon, Y.J.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.738-743
    • /
    • 2001
  • A computer program, capable of performing thermal design analysis of the triple pressure bottoming system of combined cycle power plants, was developed. The program is based on thermal analysis of the heat recovery steam generator and estimation of its size and steam turbine power. The program is applicable to various parametric analyses including optimized design calculation. This paper presents examples of analysis results for the effects of arrangement of heat exchanger units, steam pressures and deaerating sources on design performance indices such as steam turbine power and the size of heat recovery steam generator.

  • PDF

Thermodynamic Analysis on Organic Rankine Cycle Using Exhaust Gas of the Chimney in a Resource Recovery Facility (폐기물 소각시설 굴뚝의 배기가스를 이용한 유기랭킨사이클 시스템의 열역학적 해석)

  • Kim, Sunhee;Sung, Taehong;Kim, Kyung Chun
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.5
    • /
    • pp.27-35
    • /
    • 2017
  • The amount and quality of waste heat from a resource recovery facility were measured. The temperature of exhaust gas was $176.6^{\circ}C$ and the amount of that was 13.8 kg/s. This research designed a waste heat recovery system whose working fluid is R-245fa. It simulated three study cases as follows. In simulation of a basic ORC system, the turbine power output and thermal efficiency were respectively 96.56 kW, 14.3%. In simulation of a superheater connection, 0.09% of efficiency could be improved due to the increase of enthalpy by overheating of working fluid, but the obtained output was decreased with 16.58kW because of the decrease of working fluid mass. In simulation of a process heater connection, efficiency was increased up to 38.51%.

Development of an Ejector System for Operating of Chemical Lasers (III) - Development and Performance Validation of a Full-Scale Ejector System for High Power Chemical Lasers - (화학레이저 구동용 이젝터 시스템 개발 (III) - 고출력 화학레이저용 실물 크기의 이젝터 시스템 개발 및 성능 검증 -)

  • Kim, Se-Hoon;Jin, Jung-kun;Kwon, Se-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.1 s.232
    • /
    • pp.9-15
    • /
    • 2005
  • From the geometric parameter study, an optimal ejector design procedure of pressure recovery system for chemical lasers was acquired. For given primary flow reservoir conditions, an up-scaled ejector was designed and manufactured. In the performance test, secondary mass flow rate of 100g/s air was entrained satisfying the design secondary pressure, $40{\sim}50torr$. Performance validation of a supersonic ejector system along with an investigation of effects of supersonic diffuser was conducted. Placement of the diffuser at the secondary inlet further reduced diffuser upstream pressure to 7torr. Lastly, the duplicate of apparatus (air 500g/s secondary mass flow rate each) was built and connected in parallel to assess proportionality behavior on a system to handle larger mass flow rate. Test and comparison of the parallel unit demonstrated the secondary mass flow rate was proportional to the number of individual units that were brought together maintaining the lasing pressure.

Analysis of a small steam injected gas turbine system with heat recovery (열회수를 고려한 소형 증기분사 가스터빈 시스템 해석)

  • Kim, Dong-Seop;Jo, Mun-Gi;Go, Sang-Geun;No, Seung-Tak
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.8
    • /
    • pp.996-1008
    • /
    • 1997
  • This paper describes a methodology and results for the analysis of a small steam injected gas turbine cogeneration system. A performance analysis program for the gas turbine engine is utilized with modifications required for the model of steam injection and the heat recovery steam generator (HRSG). The object of simulation is a simple cycle gas turbine engine under development which adopts a centrifugal compressor. The analysis is based on the off-design operation of the gas turbine and the compressor performance map is utilized. Analyses are carried out with the injection ratio as the main parameter. The effect of steam injection on the power and efficiency of gas turbine and cogeneration capacity is investigated. Also presented is the variation in the main operating parameters inside the HRSG. Remarkable reduction in NOx generation by steam injection is confirmed. In addition, it is observed that for the 100% power operation the temperature of the cooled first nozzle blade decreases by 100.deg. C at full steam injection, which seems to have a favorable effect on the engine life time.

Analysis of organic rankine cycle for designing evaporator of engine exhaust heat recovery system (엔진 배기열 회수 증발기 설계를 위한 유기랭킨사이클 분석)

  • Ko, Jea-Hyun;Choi, Byung-Chul;Park, Kweon-Ha
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.5
    • /
    • pp.446-452
    • /
    • 2013
  • Interest in the energy efficiency and carbon reduction technology is increasing. Many studies have done on the technologies of heat recovery systems, because over 30% of the total energy is released into the atmosphere with the exhaust gas flow. In this study, the Rankine cycle is analyzed in the optimum conditions given through the previous work. The result shows that the exergy efficiency is 0.53 and the output is 1.43 kW at the condition of the pressure ratio of 0.6 and the mass flow rate of 0.7.

A study on optimum design and high efficiency operation for commutatorless Kramer type slip power recovery system of induction motor (유도전동기의 무정류자 크레므형 슬립전력회수 시스템의 적정설계 및 고효율화 운전에 관한 연구)

  • 유춘식;홍순일;노창주;이형기
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.59-74
    • /
    • 1987
  • In this dissertation, a complete model of commutatorless static Kramer type slip power recovery system of 3.phi. induction motor has been designed and tested in the laboratory, and the experimental results are compared with the numerical values. The main results of this study are summerized as follows. (1) Maintenance and repair of the mechanical commutator is obviated by adopting a thyristor commutator in place of the mechanical commutator in the conventional Kramer system. (2) The experimental results of developed torque, and stator current are generally coincided with the numerical values obtained by the derived equation, proving their validity. (3) This system is simulated and the following operational characteristics are obtained with suitable design values : (a) The speed control range of 7:1 is obtained when the turn ratio of induction motor is lowered to about 3:1 to 4:1 and the generating constant of auxiliary synchronous motor is increased to 120-175 range. (b) Its efficiency can be increased to 75-85%, the range for static Scherbius system and its power factor takes values in the range of 65-85%, which is twice of the range for static Scherbius system.

  • PDF

Hydrogen Production with High Temperature Solar Heat Thermochemical Cycle Using Dual-zone Reactor and CeO2/ZrO2 Foam Device (Dual-zone reactor와 CeO2/ZrO2 Foam Device를 이용한 고온 태양열 열화학 싸이클의 수소 생산)

  • Cho, Ji-Hyun;Seo, Tae-Beom
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.5
    • /
    • pp.27-37
    • /
    • 2017
  • In this study, an artificial solar simulator composed of a 2.5 kW Xe-Arc lamp and mirror reflector was used to carry out the solar thermal two step thermochemical water decomposition cycle which can produce high efficiency continuous hydrogen production. Through various operating conditions, the change of hydrogen production due to the possibility of a dual-zone reactor and heat recovery were experimentally analyzed. Based on the reaction temperature of Thermal-Reduction step and Water-Decomposition step at $1,400^{\circ}C$ and $1,000^{\circ}C$ respectively, the hydrogen production decreased by 23.2% under the power off condition, and as a result of experiments using heat recovery technology, the hydrogen production increased by 33.8%. Therefore, when a thermochemical two-step water decomposition cycle is conducted using a dual-zone reactor with heat recovery, it is expected that the cycle can be operated twice over a certain period of time and the hydrogen production amount is increased by at least 53.5% compared to a single reactor.

Separation Device Development and Flight Test for Marine Recovery of Scientific Balloon (과학기구 기낭의 해상 회수를 위한 분리장치 개발 및 비행시험)

  • Shim, Gyujin;Kang, Jungpyo;Kim, Hweeho;Yee, Kwanjung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.1
    • /
    • pp.49-58
    • /
    • 2019
  • The Scientific balloon is a flight system that could recover an entire platform at the end of the mission. The recovery takes place mainly in low-density populated areas, taking into account for the possible damage to the human life and public safety. In Republic of Korea, on the other hand, marine recovery should be considered due to the dense mountainous terrain and restrictions of the peninsula. In this operating environment, the envelope must be recovered because of severe marine pollution that may occur after the splashdown. Therefore, in this study, the separation device that consists of a location tracker and the waterproof system were developed. The device includes data transmission/reception, separation, and waterproof systems which are manufactured considering the environmental condition of the Korea. The performance of the device and the trajectory of the envelope were verified by conducting a separation test of a 20km platform at a target altitude and the recovery of the zero-pressure balloon.