• 제목/요약/키워드: Mechanical modeling

검색결과 3,106건 처리시간 0.026초

다공성 모델링을 이용한 평행류 열교환기의 열.유동 해석 (Heat and Flow Analysis of a Parallel Flow Heat Exchanger Using Porous Modeling)

  • 정길완;이관수
    • 대한기계학회논문집B
    • /
    • 제25권12호
    • /
    • pp.1784-1792
    • /
    • 2001
  • Numerical analysis on a parallel flow heat exchanger(PFHE) is performed using 2 dimensional turbulent porous modeling. This modeling can consider three-dimensional configuration of passage (flat tube with micro-channels), and the stability and accuracy of numerical results are improved. The geometrical parameters(e.g., the position of separators, inlet/outlet, and porosity of passages of a PFHE) are varied in order to examine the flow and thermal characteristics and flow distribution of the single phase multiple passages system. The flow non-uniformities along the paths of the PFHE are observed to evaluate the thermal performance of the heat exchanger. The location of inlet affects the heat transfer, and the location of outlet affects the pressure drop. The porosity with the optimum thermal performance is around 0.53.

박판 탄성구조물의 최적해석을 위한 계층적 모델에 관한 연구 (A Study of Hierarchical Models for the Optimal Analysis of Thin Elastic Structures)

  • 조진래
    • 대한기계학회논문집A
    • /
    • 제21권6호
    • /
    • pp.933-941
    • /
    • 1997
  • In the analysis of thin elastic structures such as plate and shell-like structures, classical lower-order theories like Kirchhoff and Reissner-Mindin theories are insufficient to describe the behavior of such structures in the region where the state of stresses is complex. On the other hand, the fully three dimensional theory of linear elasticity can provide desired analysis accuracy, but requires expensive computational implementation compared to the classical theories. This paper is concerned with the development of hierarchical models for elastic structures which can be used for hierarchical modeling for the analysis of such structures. Derivation and limit model analysis (when the thickness of structures tends to zero) of hierarchical models are presented together with a introduction of modeling error estimation. Also, numerical results supporting theoretical results are given.

Direct imposition of the wall boundary condition for simulating free surface flows in SPH

  • Park, Hyung-Jun;Seo, Hyun-Duk;Lee, Phill-Seung
    • Structural Engineering and Mechanics
    • /
    • 제78권4호
    • /
    • pp.497-518
    • /
    • 2021
  • In this study, a new method for treating the wall boundary in smoothed particle hydrodynamics (SPH) is proposed to simulate free surface flows effectively. Unlike conventional methods of wall boundary treatment through boundary particles, in the proposed method, the wall boundary condition is directly imposed by adding boundary truncation terms to the mass and momentum conservation equations. Thus, boundary particles are not used in boundary modeling. Doing so, the wall boundary condition is accurately imposed, boundary modeling is simplified, and computation is made efficient without losing stability in SPH. Performance of the proposed method is demonstrated through several numerical examples: dam break, dam break with a wedge, sloshing, inclined bed, cross-lever rotation, pulsating tank and sloshing with a flexible baffle. These results are compared with available experimental results, analytical solutions, and results obtained using the boundary particle method.

압출적층조형 공정 기반 3D 프린팅 제품 기계적 특성의 지배적 공정인자 도출 및 최적화에 관한 연구 (Identification and Optimization of Dominant Process Parameters Affecting Mechanical Properties of FDM 3D Printed Parts)

  • 김정섭;조난현;남정수;이상원
    • 대한기계학회논문집A
    • /
    • 제41권7호
    • /
    • pp.607-612
    • /
    • 2017
  • 최근 다양한 분야에 적용되고 있는 적층 가공 기술(AM)은 복잡한 형상 제조 및 재료 비용 절감으로 인해 혁신적인 제품 생산 방법으로 각광을 받고 있다. 그 중에서도 압출적층조형(Fused Deposition Modeling, FDM) 공정을 통한 친환경 부품 제조는 의료 분야산업에서 많은 주목을 받고 있다. 따라서, 본 논문에서는 친환경 생분해성 재료인 Poly Lactic Acid(PLA)를 사용한 FDM 공정 실험을 수행하고 제작된 적층 시편에 대한 인장 시험을 적용하여 주요 FDM 공정 변수인 적층 두께, 적층 방향, 적층 충진량이 인장 시편의 기계적 성질에 미치는 영향을 정량적 및 정성적으로 분석하고 이를 극대화하는 각 공정 변수의 최적값을 도출하였다.

단일 기준 틀을 사용한 구조 동역학 모델링 비교 연구 (Comparison Study on Structural Dynamic Modelings Employing Single Reference Frame)

  • 김정민;유홍희
    • 대한기계학회논문집A
    • /
    • 제28권12호
    • /
    • pp.1931-1936
    • /
    • 2004
  • In this paper, modeling methods for the structural dynamic analysis employing single reference frame are presented and their modal and transient analysis results are compared. The geometric stiffening effects often occur when structures undergo large overall motion. These effects were considered in several structural previous modeling methods but the role of reference frame has never been scrutinized. In this study, modeling methods employing single reference frame are presented, and their numerical results are compared. The results show that discrepancy between the two modeling methods increases as the eccentricity of the structural system and the magnitude of the large overall motion increase.

산업용 고체 처리 공정 - 입자 반응 및 고정층 반응기 모델링 (Industrial Solids Processing Applications - Particle Reaction Models and Bed Reactor Models)

  • 안형준;최상민
    • 한국연소학회지
    • /
    • 제22권2호
    • /
    • pp.27-35
    • /
    • 2017
  • This paper reviews the previous industrial solid bed process simulations to provide a better understanding of the modeling approaches to the particle reactions in the bed. Previous modeling studies on waste incinerator, iron ore sintering bed, blast furnace, iron ore pellet indurator, and biomass combustor can be seen on the common ground of unsteady 1-D modeling scheme. Approaches to the particle reaction modeling have been discussed in terms of the status of solid particles in the bed, types of reaction progression in a particle, and the consideration of the intra-particle temperature gradient.

수치해석을 위한 변형된 난류 다공성 모델링 (A Modified Turbulent Porous Modeling for Numerical Analysis)

  • 정길완;이관수
    • 대한기계학회논문집B
    • /
    • 제26권6호
    • /
    • pp.875-882
    • /
    • 2002
  • The modeling for turbulent flow through a porous media has not been confirmed because of a undetermined constant which appears in the governing equations. In present study, the turbulent porous modeling based on the local thermal equilibrium has been extended to the turbulent clear flow. A undetermined constant is also suggested by microscopic analysis. The microscopic analysis is performed in the flat tube with micro-channels, and it confirms that the undetermined constant is 0.99. It is shown that the results of the macroscopic analysis using confirmed constant agree well with those of the microscopic analysis with a maximum error of 3.5%.

범용 CFD 코드에서 석탄 가스화 및 연소 모델링에 관한 이해 (Understanding Coal Gasification and Combustion Modeling in General Purpose CFD Code)

  • 이후경;최상민;김봉근
    • 한국연소학회지
    • /
    • 제15권3호
    • /
    • pp.15-24
    • /
    • 2010
  • The purpose of this study is to assess approaches to modeling coal gasification and combustion in general purpose CFD codes. Coal gasification and combustion involve complex multiphase flows and chemical reactions with strong influences of turbulence and radiation. CFD codes would treat coal particles as a discrete phase and gas species are considered as a continuous phase. An approach to modeling coal reaction in $FLUENT^{(R)}$, selected in this study as a typical commercial CFD code, was evaluated including its devolatilization, gas phase reactions, and char oxidation, turbulence, and radiation submodels. CFD studies in the literature were reviewed to show the uncertainties and limitations of the results. Therefore, the CFD analysis gives useful information, but the results should be carefully interpreted based on understandings on the uncertainties associated with the modelings of coal gasification and combustion.

두 기하학적 비선형 효과들을 고려한 대변위 강체운동을 하는 보의 동적 모델링 방법 (Dynamic Modeling Method for Beams Undergoing Overall Rigid Body Motion Considering Two Geometric Non-linear Effects)

  • 김나은;유홍희
    • 대한기계학회논문집A
    • /
    • 제27권6호
    • /
    • pp.1014-1019
    • /
    • 2003
  • A dynamic modeling method for beams undergoing overall rigid body motion is presented in this paper. Two special deformation variables are introduced to represent the stretching and the curvature and are approximated by the assumed mode method. Geometric constraint equations that relate the two special deformation variables and the cartesian deformation variables are incorporated into the modeling method. By using the special deformation variables, all natural as well as geometric boundary conditions can be satisfied. It is shown that the geometric nonlinear effects of stretching and curvature play important roles to accurately predict the dynamic response when overall rigid body motion is involved.