• 제목/요약/키워드: Mechanical machining

검색결과 1,391건 처리시간 0.029초

5축 CNC가공의 검증에 관한 연구 (A Study on the Verification of 5-Axis CNC Machining)

  • 김찬봉;양민양
    • 대한기계학회논문집
    • /
    • 제18권1호
    • /
    • pp.93-100
    • /
    • 1994
  • 5-axis CNC machining is being used in the manufacturing of tire mold, screw, and turbine blade because it can produce complex workpiece more efficiently and accurately than 3-axis CNC machining does. However, it is difficult to calculate the CL data in 5-axis CNC machining. This paper describes an efficient method to modify and edit the NC code and a data structure for representation of the workpiece produced by 5-axis CNC machining. Wireframe display of tool path and shading display of workpiece are used to represent verification results. Machining errors can be evaluated quantitively using the data structure based on the workpiece data model. The methods are implemented in a program with a IBM-PC and MS-Windows.

미세방전가공 중 발생하는 debris를 고려한 가공특성 연구 (Influence of Debris in Micro Electrical Discharge Machining Processes)

  • 국경훈;이희원;민병권;이상조
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1244-1247
    • /
    • 2005
  • The material removal mechanism of Electrical Discharge Machining (EDM) process has been studied for several decades. However, understanding of the material removal mechanism is still a difficult problem because the mechanism involves complicated physical phenomena including plasma. Especially, for a micro-EDM process, due to the influence of the debris that is generated during the machining process, quantitative modeling of EDM becomes more complex. To understand better the effects of the debris in the micro-EDM process experimentally, a new approach has been introduced in this study. Using a specially designed workpiece holder, the debris generated during the EDM with various process conditions has been collected. Then, using a simulated environment using micro-sized metal powders, the influence of the debris during the single EDM discharge has been observed. The effects of EDM process parameters on the debris size and product quality are discussed.

  • PDF

다결정 다이아몬드를 이용한 미세 공구 제작과 이를 이용한 미세 복합 가공 (Fabrication of PCD Micro Tool and its Hybrid Micro Machining)

  • 도안카오후안;김보현;정도관;주종남
    • 한국정밀공학회지
    • /
    • 제28권6호
    • /
    • pp.694-700
    • /
    • 2011
  • Since polycrystalline diamond (PCD) has high hardness like diamond, it has been used as tool material for lathe and milling of non-ferrite material. A micro tool fabricated from PCD material can be used for micro machining of hard material such as tungsten carbide, glass, and ceramics. In this paper, micro PCD tools were fabricated by micro EDM (electrical discharge machining) and used for micro grinding of glass. Craters generated on the tool surface by EDM spark work as like grits in grinding process. The effects of tool shapes, tool roughness and PCD grain size were investigated. Also studied was a hybrid process combining electrochemical discharge machining (ECDM) and micro grinding for micro-structuring of glass.

플라즈마 모델을 이용한 방전가공의 전기적 거동 예측 (Prediction of electric dynamics of electric discharge machining using Plasma model)

  • 김기원;정영훈;민병권;이상조
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.604-607
    • /
    • 2005
  • In the electro-discharge machining the machining performance is closely related to the characteristics of discharge which can be identified from electrical behavior in gap between workpiece and electrode. Therefore, the accurate prediction of electrical behavior in electro-discharge machining (EDM) is useful to process control and optimization. However, any simulation model fur prediction of electrical behavior in EDM process has never been reported until now. In this study, a simulation model is developed to analyze the electrical behavior of electro-discharge plasma which significantly influences electrical behavior in EDM process. For the purpose of this the fundamentals of electro-discharge mechanism such as inception, propagation, formation of plasma channel and termination are investigated to accurately predict the cycle of discharge plasma in EDM. As a result, a mathematical model of electro-discharge plasma is constructed with considering the fundamentals of electro-discharge plasma. Consequently, it is demonstrated that the developed model can predict the electrical behavior of plasma such as electron density in various conditions.

  • PDF

선삭 공정에서의 고능률 가공을 위한 주축 회전수의 최적화 (Spindle Speed Optimization for High-Efficiency Machining in Turning Process)

  • 조재완;강유구;김석일
    • 한국정밀공학회지
    • /
    • 제26권1호
    • /
    • pp.138-145
    • /
    • 2009
  • High-efficiency and high-quality machining has become a fact of life for numerous machine shops in recent years. And high-efficiency machining is the most significant tool to enhance productivity. In this study, to achieve high-efficiency machining in turning process, a spindle speed optimization method was proposed based on a cutting power model. The cutting force and power were estimated from the cutting parameters such as specific cutting force, feed, depth of cut, and spindle speed. The time delay due to the acceleration or deceleration of spindle was considered to predict a more accurate machining time. Especially, the good agreement between the predicted and measured cutting forces showed the reliability of the proposed optimization method, and the effectiveness of the proposed optimization method was demonstrated through the simulation results associated with the productivity enhancement in turning process

미세정밀밀링 가공을 위한 검사시편의 가공조건에 따른 표면거칠기에 대한 영향 분석 (The Effect of Surface Roughness according to Machining Conditions of Test Specimen for Precision Micro-milling Machining)

  • 심민섭;김동현;이춘만
    • 한국정밀공학회지
    • /
    • 제32권1호
    • /
    • pp.49-55
    • /
    • 2015
  • Recently, many researchers and industry are looking for ways to decrease the use of lubricants because of economical and environmental reasons. One of the lubrication technologies is the MQL method. This study presents a research of MQL and Wet milling processes of Al 6061 material. For this experiment, the test specimen is suggested, and various machining conditions are applied. And, shape of micro-pattern which has been recently spotlighted is included in the test specimen. In order to compare MQL with Wet machining, several milling experiments were carried out, varying feed rate, cutting speed, depth of cut, etc. Finally, the surface roughness results of machining tests according to the process conditions were measured. It is expected that the results of machining experiments can be used to predict the surface roughness of various MQL milling processes.

탄소섬유복합재 가공의 결함특성 및 결함 저감을 위한 경계검출 (CFRP Drilling Experiments: Investigation on Defect Behaviors and Material Interface Detection for Minimizing Delamination)

  • 김규호;하태인;이찬영;안재훈;김주영;민병권;김태곤;이석우
    • 한국정밀공학회지
    • /
    • 제33권6호
    • /
    • pp.453-458
    • /
    • 2016
  • CFRP (Carbon Fiber Reinforced Plastic) and CFRP-metal stacks have recently been widely used in the aerospace and automobile industries. When CFRP is machined by a brittle fracture mechanism, defect generation behaviors are different from those associated with metal cutting. The machining quality is strongly dependent on the properties of CFRP materials. Therefore, process control for CFRP machining is necessary to minimize the defects of differently manufactured CFRPs. In this study, defects in drilling of CFRP substrates with a variety of fiber directions and resin types are compared with respect to thrust force. An experimental study on material interface detection is carried out to investigate its benefits in process control.

펄스전해가공을 이용한 인바 박판의 가공 형상 및 Overcutting 현상에 관한 연구 (A Study on Processing Shape and Overcutting of Invar Sheet by Pulse Electrochemical Machining)

  • 양부열;김성현;최승건;최웅걸;전광호;이은상
    • 한국생산제조학회지
    • /
    • 제24권3호
    • /
    • pp.314-319
    • /
    • 2015
  • Invar is a compound metal of Fe-Ni system contained 36.5% Ni. The characteristic of invar is that the coefficient of thermal expansion is $1.0{\times}10^{-6}cm/^{\circ}C$. It is approximately 10 times smaller than series of steel. Because of this low thermal expansion characteristic of Invar, it is used to shadow mask of display device such as UHDTV or OLED TV. In this study, pulse current from pulse generator instead of DC current is used to overcome the disadvantages of the conventional electrochemical machining. Pulsed current with different duty factor in PECM affect the precise geometry. Pulse electrochemical machining is conducted to machine the micro hole to the invar sheet with different duty factor. The machined shape and overcut of invar sheet with different duty factor is observed by optical microscope and scanning electron microscope (SEM).

기계 및 화학적 가공법을 이용한 신 미세가공기술 (A Novel Micro-Machining Technique Using Mechanical and Chemical Methods)

  • 이재준;김대은
    • 대한기계학회논문집A
    • /
    • 제20권10호
    • /
    • pp.3113-3125
    • /
    • 1996
  • The objective of this study is to develop novel method named mechanical and chemical machining technique, which is capable of producing three dimensional patterns of few micrometers in dimension on a silicon wafer without the use of a mask. The strategy is to impart mechanical energy along the path of the pattern to be fabricated on a single crystal silicon by way on introdusing frictional interaction under controlled conditions. Then, the surface is preferentially etched to reveal the areas that have been mechanically energized. Upon completion of the etching process, the three dimensional pattern is produced on the silicon surface. Experiments have been conducted to identify the optimal tool material, geometery, as well as fabrication condition. The new technique introduced in this paper is significantly simpler than the conventional method which require sophisticated equipment and much time.