• Title/Summary/Keyword: Mechanical machining

Search Result 1,392, Processing Time 0.034 seconds

An Experimental Study on Magnetic Assisted Polishing of Polycarbonate Plate for Recycling (폴리카보네이트 판재의 재활용을 위한 자기연마 가공)

  • Lee, Yong-Chul;Kim, Kwang-Sam;Kwak, Tae-Soo;Lee, Jong-Ryul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.3
    • /
    • pp.1-6
    • /
    • 2013
  • This study has focused on transparency recovering of the polycarbonate by polishing its surface for recycling. The polycarbonate has many properties such as excellent mechanical strength, electrical insulating, superior heat resistance to other plastic material and especially good transparency. It has been used as barrier for the traffic noise at the roadside and the greenhouse for the palm house. But the polycarbonate has changed slightly as time goes by 10 years because of exposure to the strong sunlight and oxidization in the atmosphere, as result has lost its transparency. Magnetic assisted polishing has been utilized as an effective polishing method to recover the transparency of polycarbonate. The polycarbonate which has been used for 10 years was adopted as the sample. The first surface roughness of the sample was 1$1.23{\mu}mRa$, $7.5{\mu}mRz(DIN)$ respectively. In the experimental results, it showed that the surface roughness of the polished sample improved $0.013{\mu}mRa$, $0.08{\mu}mRz(DIN)$ from the first surface roughness respectively. The surface roughness get almost back again by magnetic assisted polishing. These results also showed that the magnetic assisted polishing was efficient machining method to reuse the polycarbonate material.

Some Physical Properties of 9-Year-Old Xylia xylocarpa Planted in Malaysia

  • Sahd, Mohd. Hamami;Josue, James;Chun, Su-Kyoung
    • Journal of the Korea Furniture Society
    • /
    • v.19 no.6
    • /
    • pp.411-419
    • /
    • 2008
  • Xylia xylocarpa is fast-growing trees that are currently planted on trial basis in Sabah, Malaysia. The wood quality of trees grown in Sabah may differ from those grown in other places due to the environmental factors. Five 9-year-old trees of each species were extracted from their respective plots at Luasong, Tawau. Wood specimens were prepared from three height levels; bottom, middle and top, at the inner and outer radial positions. The within-tree and between-tree variations of physical properties of these species were analyzed. The basic density, oven-dry density and green moisture content(MC) are 0.72g/$cm^3$, 0.78g/$cm^3$ and 49.8% respectively. The shrinkage from green to oven-dry conditions for the radial and tangential directions were 3.35% and 5.76%, respectively. The trends of within-tree variations for most properties were more consistent in radial rather than vertical direction. This suggests diameter growth to be a more important factor contributing to the variations compared to height. Samples from the outer part of the stem were found to have higher density, shrinkage and mechanical strengths. The between-trees variations of some wood properties were found to be significantly different, probably due to genetic and micro-environmental factors. Significant correlation was recorded among the physical properties of the species. The true potential of X. xylocarpa for end-uses would be enhanced by further research such as the study on properties of wood from different sites and other properties like durability, seasoning, processing and machining characteristics. The characteristics of X. xylocarpa are comparable to a number of local popular hardwood species, indicating its suitability for heavy construction uses.

  • PDF

Study on Vibrated Cutting Blade with Hinge Mechanism (힌지구조 진동절단장치에 관한 연구)

  • Kang, Dong-Bae;Ahn, Joong-Hwan;Son, Seong-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.2
    • /
    • pp.443-448
    • /
    • 2010
  • Rapid advance in information technology requires high performance devices with compact size. Integrated multi-layer electronic element with different functions enables those compact devices to possess various performances and powerful capabilities. In mass production, the multi-layer electronic element is manufactured as a bulk type with a large number of parts for productivity. However, this may cause the electronic part to be damaged in the cutting process of the bulk elements to separate into each part. Therefore the cutting performance of multi-layer element bulk is playing an important role in the view of production efficiency. This study focuses on the cutting characteristics of multi-layer electronic elements. In order to increase the efficiency, the vibration cutting method was applied to the blade cutting machine. Flexure hinge structure, which is an physical amplifier of increasing displacement, was attached to the vibration cutting device for machining efficiency. The behaviors of flexure hinge were modeled with Lagrange equation and simulated with finite element method (FEM). Performance of hinge structure was verified by experimental modal analysis (EMA) for hinge structure to be tuned to the specific mode of vibrations. Cutting experiments of multi-layer elements were conducted with the proposed vibrating cutting module, and the characteristics was analyzed.

Mechanical and Electrical Properties of Hot-Pressed Silicon Carbide-Zirconium Diboride Composites (고온가압소결한 SiC-ZrB$_2$ 복합체의 기계적, 전기적 특성)

  • 신용덕
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.135-140
    • /
    • 1997
  • The influences of ZrB$_2$ additions to SiC on microstructural, DDM(Electrical Discharge Machining), mechanical and electrical properties were investigated. composites were prepared by adding 15, 30, 45 vol.% ZrB$_2$particles as a second phase to SiC matrix. SiC-ZrB$_2$ composites obtained by hot pressing for high temperature structural application were fully dense with the relative densities over 99%. The fracture toughness of the composites were increased with the ZrB$_2$contents. In case of composite containing 30vol.% ZrB$_2$, the flexural strength and fracture toughness showed 45% and 60% increase, respectively compared to that of monolithic SiC sample. The electrical resistivities of SiC-ZrB$_2$ composites decreased significantly with the ZrB$_2$ contents. The electrical resistivity of SiC-30vol.% ZrB$_2$ composite showed 6.50$\times$10$^{-4}$ $\Omega$.cm. Cutting velocity of EDM of SiC-ZrB$_2$ composites are directly proportional to duty factor of pulse width. Surface roughness, however, are not all proportional to pulse width. Higher-flexural strength composites show a trend toward smaller crater volumes, leaving a smoother surface; the average surface roughness of the SiC-ZrB$_2$ 15 vol.% composite with the flexural strengthe of 375㎫ was 3.2${\mu}{\textrm}{m}$, whereas the SiC-ZrB$_2$ 30.vol% composite of 457㎫ was 1.35${\mu}{\textrm}{m}$. In the SEM micrographs of the fracture surface of SiC-ZrB$_2$ composites, the SiC-ZrB$_2$ two phases are distinct; the white phase is the ZrB$_2$and the gray phase is the SiC matrix. In the SEM micrographs of the EDM surface, however, these phases are no longer distinct because of thicker recast layer of resolidified-melt-formation droplets present. It is shown that SiC-ZrB$_2$ composites are able to be machined without surface cracking.

  • PDF

Effect of Groove Shapes on Mechanical Properties of STS316L Repaired by Direct Energy Deposition (직접 에너지 적층을 통한 STS316L 소재의 보수 공정에서 그루브 형상이 기계적 특성에 미치는 효과)

  • Oh, W.J.;Son, Y.;Son, J.Y.;Shin, G.W.;Shim, D.S.
    • Transactions of Materials Processing
    • /
    • v.29 no.2
    • /
    • pp.103-112
    • /
    • 2020
  • This study explores the effects of different pre-machining conditions on the deposition characteristics and mechanical properties of austenitic stainless steel samples repaired using direct energy deposition (DED). In the DED repair process, defects such as pores and cracks can occur at the interface between the substrate and deposited material. In this study, we varied the shape of the pre-machined zone for repair in order to prevent cracks from occurring at the slope surface. After repairs by the DED process, macro-scale cracks were observed in samples that had been pre-machined with elliptic and trapezoidal grooves. In addition, it was not possible to completely prevent micro-crack generation on the sloped interfaces, even in the capsule-type grooved sample. From observation of the fracture surfaces, it was found that the cracks around the inclined interface were due to a lack of fusion between the substrate and the powder material, which led to low tensile properties. The specimen with the capsule-type groove provided the highest tensile strength and elongation (respective of 46% and 571% compared to the trapezoidal grooved specimen). However, the tensile properties were degraded compared to the non-repaired specimen (as-hot rolled material). The fracture characteristics of the repaired specimens were determined by the cracks at the sloped interfaces. These cracks grew and coalesced with each other to form macro-cracks, they then coalesced with other cracks and propagated to the substrate, causing final fracture.

Study on the Load-Carrying Capacity of Finite-Width Slider Bearing with Wavy Surface (표면웨이브가 존재하는 유한폭 슬라이더 베어링의 지지하중 특성에 관한 연구)

  • Shin, Jung-Hun;Lee, Gi-Chun;Park, Jong-Won;Kang, Bo-Sik;Kim, Kyung Woong
    • Tribology and Lubricants
    • /
    • v.29 no.1
    • /
    • pp.13-18
    • /
    • 2013
  • Slider bearing is a widely used load-carrying element in the industry. While a large number of studies have investigated the effect of overall surface curvature, very few have considered sinusoidal surface. Recently, consideration of surface roughness/waviness or intentional wave design has been identified as an important issue in the manufacture of hard disk driver, mechanical seal, hydraulic machine, and etc. This study investigated the load-carrying capacity of a finite-width slider bearing with a wavy surface. Film thickness ratios, length-width ratio, ambient pressure, amplitude, and partial distribution were selected as the simulation parameters. The calculation results showed that the load-carrying capacity rapidly varied at small film thickness ratio, but the waviness near the area of minimum film thickness made much more influence with an increase in film thickness ratio. As the length-width ratio of bearing was increased, ambient pressure became more influential at small film thickness ratios. Furthermore a particular partial distribution of the wavy area led to higher load-carrying capacity than did the whole distribution. Consequently, the results of this study are expected to be of use in surface micro-machining of finite-width slider bearings.

Measurement and verification of pipe cutting power using Labview software (Labview 소프트웨어를 활용한 파이프 절단 파워 측정 및 검증)

  • Jang, Tae-ho;Kim, Youngshik;Jang, Tae-soo;Ryu, Bong-Jo
    • Journal of Digital Contents Society
    • /
    • v.18 no.7
    • /
    • pp.1387-1391
    • /
    • 2017
  • Cutting power estimation can be used to select appropriate actuators in the design process of machine tools. Therefore, accurate estimation of cutting power is an important part of the design process. In this study, pipe cutting power is first calculated theoretically using the slotting cutting power equation and then verified experimentally. In this case, a pipe cutting machine is used to cut two pipes made of different materials. Power consumptions in the motor during pipe cutting are measured by using the embedded software, Labview, and NI hardware. The slotting cutting power equation can thus be confirmed easily comparing theoretically calculated cutting powers with experimentally measured cutting powers. The pipe materials used in this study are SUS304 and AL6N01. The specific cutting power of AL6N01 material is proposed through our cutting experiment. As a result, this cutting power can be used to design machining tools for AL6N01 material.

Performance Assessment of Linear Motor for High Speed Machining Center (고속 HMC 이송계의 운동 특성 평가)

  • 홍원표;강은구;이석우;최헌종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.158-161
    • /
    • 2003
  • Recently, the evolution in production techniques (e.g. high-speed milling), the complex shapes involved in modem production design, and the ever increasing pressure for higher productivity demand a drastic improvement of the dynamic behavior of the machine tool axes used in production machinery. And also machine tools of multi functional and minimized parts are increasingly required as demand of higher accurate in some fields such as electronic and optical components etc. The accuracy and the productivity of machined parts are natural to depend on the linear system of machine tools. The complex workpiece surfaces encountered in present-day products and generated by CAD systems are to be transformed into tool paths for machine tools. The more complex these tool paths and the higher the speed requirements, the higher the acceleration requirements are needed to the machine tool axes and the motion control system, and the more difficult it is to meet the requirements. The traditional indirect drive design for high speed machine tools, which consists of a rotary motor with a ball-screw transmission to the slide, is limited in speed, acceleration, and accuracy. The direct drive design of machine tool axes. which is based on linear motors and which recently appeared on the market. is a viable candidate to meet the ever increasing demands, because of these advantages such as no backlash, less friction, no mechanical limitations on acceleration and velocity and mechanical simplicity. Therefore performance tests were carried out to machine tool axes based on linear motor. Especially, dynamic characteristics were investigated through circular test.

  • PDF

A Study on Detection of Cutting Tool Fracture by Dual Signal Measurements (이중신호에 의한 공구파손 검출에 관한 연구)

  • 윤재웅;양민양;박화영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.4
    • /
    • pp.707-722
    • /
    • 1992
  • Fracture of a cutting tool is one of the most serious problems in machining systems. Therefore, several methods have been proposed so far to detect cutting tool fracture. However, most of them have some problems from the viewpoint of practical applications. In this study, the feasibility of using acoustic emission and cutting force signals for the detection of massive tool breakages as well as small fracture of cutting tools were investigated. Turning experiments were performed using conventional carbide inset tools under realistic cutting conditions and the SM45C steel and heat treated SM45C steel were used as a workpiece. And the sensitivities of the AE and cutting force signals to the fracture of cutting tools were illustrated. Finally, a detection algortithm for the fracture of cutting tools was developed through the analysis of these dual signals in the several types of tool fracture.

A Study on the Dynamic Response Characteristics of Lathe Boring Bar (선반용 보링바의 동적응답특성 변동에 관한 연구)

  • Chun, Se-Ho;Ko, Tae-Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.8
    • /
    • pp.62-69
    • /
    • 2010
  • Internal lathe machining with a boring bar is weak with respect to vibration because the bar is long and slender. Therefore, it is important to study the dynamic characteristics of a boring bar. The purpose of this study was to identify the effects of overhang and cutting conditions on the dynamic response characteristics of a boring bar. For an efficient experiment, an $L_g(3^3)$ orthogonal array was applied and the results were quantitatively analyzed by ANOVA. Overhang, feed per revolution, and depth of cut were selected as independent variables. Meanwhile, dynamic stiffness, damping ratio, damping coefficient, and acceleration were chosen as dependent variables. The vibration signal was obtained from an accelerometer attached to the boring bar, followed by visualization by a signal analyzer. The effect of overhang was found to have a significant effect on the dynamic stiffness, damping ratio, and damping coefficient, but the other variables did not. As the length of the overhang increased, the dynamic stiffness decreased and the damping ratio increased. In addition, the damping coefficient increased until the length of the overhang was 4D (where D is the shank diameter), after which it remained constant. The acceleration decreased until the overhang length was 4D, and then increased sharply when the overhang was increased further. From these results, the behavioral trend of the damping characteristics changed when its overhang length was 4D. Consequently, there is a critical point that the dynamic characteristics of boring bar change.