• 제목/요약/키워드: Mechanical loading

검색결과 2,770건 처리시간 0.031초

A Study on the Properties of Transition Metal Nitride Coating Materials for the Recovery of Tungsten and Rare Metals (텅스텐 및 희유금속 회수를 위한 초경합금 전이금속질화물 코팅소재 특성연구)

  • Kim, Jiwoo;Kim, Myungjae;Kim, Hyokyeong;Park, Sohyun;Seo, Minkyeong;Kim, Jiwoong
    • Resources Recycling
    • /
    • 제31권1호
    • /
    • pp.46-55
    • /
    • 2022
  • The recycling of coated cemented carbide scraps is becoming increasingly significant for the recovery of rare metals. However, coatings consisting of Group IV and V transition metal nitrides are one of the challenging factors in obtaining high-purity materials. We investigated the structural, elastic, and mechanical properties of Group IV and V transition-metal nitrides (TiN, VN, ZrN, NbN, HfN, and TaN) using first-principle calculations. Convergence tests were performed to obtain reliable calculated results. The equilibrium structures of the nitrides were in good agreement with those of a previous study, indicating the reliability of the data. Group IV transition metal nitrides show a higher covalent bonding nature. Thus, they exhibit a higher degree of brittleness than that of Group V transition metal nitrides. In contrast, Group V transition metal nitrides show weaker resistance to shear loading and more ductile behavior than Group IV transition metal nitrides because of the metallic bonds characterized by valence electron concentration. The results of the crystal orbital Hamilton population analysis showed good agreement with the shear resistance tendencies of all transition metal nitrides.

Prediction of the Damage Zone Induced by Rock Blasting Using a Radial Crack Model (방사균열 모델을 적용한 암반 발파에 의한 손상 영역 예측)

  • Sim, Young-Jong;Cho, Gye-Chun;Kim, Hong-Taek
    • Journal of the Korean Geotechnical Society
    • /
    • 제22권11호
    • /
    • pp.55-64
    • /
    • 2006
  • It is very Important to predict the damage zone of a rock mass induced by blasting for the excavation of an underground cavity such as a tunnel, as the damage zones incur mechanical and hydraulic instability of the rock mass potentially. Complicated blasting processes that can hinder the proper characterization of the damage zone can be effectively represented by two loading mechanisms. The first mechanism is the dynamic impulsive load-generating stress waves that radiate outwards immediately after detonation. This load creates a crushed annulus along with cracks around the blasthole. The second is the gas pressure that remains for an extended time after detonation. As the gas pressure reopens some arrested cracks and extends these, it contributes to the final structure of the damage zone induced by the blasting. This paper presents a simple method to evaluate the damage zone induced by gas pressure during rock blasting. The damage zone is characterized by analyzing crack propagations from the blasthole. To do this, a model of a blasthole with a number of radial cracks that are equal in length in a homogeneous infinite elastic plane is considered. In this model, crack propagation is simulated through the use of only two conditions: a crack propagation criterion and the mass conservation of the gas. The results show that the stress intensity factor of a crack decreases as the crack propagates from the blasthole, which determines the crack length. In addition, it was found that the blasthole pressure continues to decrease during crack propagation.

Development of Temperature Compensated Micro Cone by using Fiber Optic Sensor (광섬유를 이용한 온도 보상형 마이크로콘의 개발)

  • Kim, Raehyun;Lee, Woojin;Yoon, Hyung-Koo;Lee, Jong-Sub
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • 제29권4C호
    • /
    • pp.163-174
    • /
    • 2009
  • Mechanical device using the load cell or strain gage sensor can be influenced by tempearute changes because temperature change can cause a shift in the load cell or straing gage output at zero loading. In this paper, micro cone penetrometers with 1~7mm in diameter, are developed by using an optical fiber sensor (FBG: Fiber Bragg Grating) to compensate the continous temperature change during cone penetration test. Note the temperature compensated method using optical fiber sensor which has hair-size in diameter, and is not affected by environmental conditions because the measured data is the wavelength shifting of the light instead of the intensity of the electric voltage. Temperature effect test shows that the output voltage of strain gage changes and increases with an increase in the temperature. A developed FBG cone penetrometer, however, achieves excellent temperature compensation during penetration, and produces continuous change of underground temperature. In addition, the temperature compensated FBG cone shows the excellent sensitivity and detects the interface of the layered soils with higher resolution. This study demonstrates that the fiber optic sensor renders the possibility of the ultra small size cone and the new fiber optic cone may produce more reliable temperature compensated tip resistance.

Progressive Damage and Failure Analysis of Open-Hole Composite Specimens Under Compressive Loading Using Finite Element Analysis (유한요소해석을 이용한 압축 하중을 받는 오픈 홀 복합재 시편의 점진적 손상 및 파손 분석)

  • Young Cheol Kim;Geunsu Joo;Hong-Kyu Jang;Jinbong Kim;Min-Gyu Kang;Woo-Kyoung Lee;Ji Hoon Kim
    • Composites Research
    • /
    • 제36권5호
    • /
    • pp.303-309
    • /
    • 2023
  • In this paper, a Progressive Damage and Failure Analysis (PDFA) modeling method was developed using ABAQUS/EXPLICIT to predict in-plane damage and delamination for Open-Hole Compression (OHC) testing. The proposed PDFA model was constructed based on Hashin criteria and cohesive behavior. The strength and stiffness of OHC specimens with three types of stacking sequences [(45/-45/02)3]s , [(45/0/-45/90)3]s and [45/-45/0/45/-45/90/(45/-45)2]s were compared to comprehensively evaluate the validity of the Finite Element(FE) model of PDFA. The strength and stiffness of the OHC specimens were predicted relatively well, with less than a percentage error 10.0 %. For the numerical simulation case for each layup, the damage initiation/evolution of OHC specimens were evaluated for delamination and tension/compression matrix damage before and after failure.

Properties of stretch-activated $K^+$ channels in an G292 osteoblast-like cell (G292 세포에서 세포막 신장으로 활성화되는 $K^+$통로의 특성)

  • Lee, Sang-Gook;Jung, Dong-Keun;Suh, Duk-Joon;Park, Soo-Byung
    • The korean journal of orthodontics
    • /
    • 제30권2호
    • /
    • pp.197-204
    • /
    • 2000
  • [$K^+$]-selective ion channels were studied in excised inside-out membrane patches from human osteoblast-like cells (G292). Three classes of $K^+$channels were present and could be distinguished on the basis of conductance. Conductances were $270\pm27\;pS,\;113\pm12\;pS,\;48\pm8\;pS$ according to their approximate conductances in symmetrical 140 mM KCl saline at holding potential of -80 mV It was found that the small conductance (48 pS) $K^+$channel activation was dependent on membrane voltage. In current-voltage relationship, small conductance $K^+$channel showed outward rectification, and it was activated by the positive potential inside the membrane. In recordings, single channel currents were activayed by a negative pressure outside the membrane. The membrane pressure increased $P_{open}$ of the $K^+$ channel in a pressure-dependent manner. In the excised-patch clamp recordings, G292 osteoblast-like cells have been shown to contain three types of $K^+$ channels. Only the small conductance (48 pS) $K^+$channel is sensitive to the membrane stretch. These findings suggest that a hyperpolarizing current, mediated in part by this channel, may be associated with early events during the mechanical loading of the osteoblast. In G292 osteoblast-like cells, $K^+$channel is sensitive to membrane tension, and may represent a unique adaptation of the bone cell membrane to mechanical stress.

  • PDF

Physical Properties and Detachment Characteristics of Persimmon Fruit (감 과실(果實)의 물리성(物理性)및 이탈특성(離脫特性))

  • Kim, Tae Han
    • Current Research on Agriculture and Life Sciences
    • /
    • 제3권
    • /
    • pp.62-69
    • /
    • 1985
  • In order to develop the mechanical fruit harvest system the detachment force, type and torque investigated and analyse as several loading modes were applied on the fruit-stem of the persimmon fruit. A proving ring with strain gauges was used for the experiment. The following conclusions were drawn from the results : The mode of withdrawl of the stem from the calyx appeared highly as the persimmon fruit matured. The mode of failure at the junction of the stem and calyx which was desirable mode for mechanical fruit harvest increased as the angular displacement of the fruit with respect to the stem axis increased from zero to ninety degrees. However the mode of failure of the fruiting branch decreased for the same degree of angle pull as above. The range of detachment force of the persimmon fruit was from 13 to 5 kg. The detachment force decreased from 47 to 8 % as the fruit matured. Also, the force decreased from 31 to 24 % for the same maturity levels as the angular displacement of the fruit with respect to the stem axis increased from zero to ninety degrees. The range of detachment force to weight ratio(F/W) of the fruit was from 130 to 54 approximately. The detachment force to weight ratio (F/W) decreased from 36 to 8 % as the fruit matured. Also, the ratio (F/W) decreased from 49 to 33 % for the same maturity levels as the same degree of angle pull as above. In order to remove fruit from tree the desirable force applied to the stem is approximately from 1,280 to 530 kg. Also, the desirable torque to remove the fruits was approximately from 1.1 to $0.5kg{\cdot}cm$.

  • PDF

Cyclic Behavior of Wall-Slab Joints with Lap Splices of Coldly Straightened Re-bars and with Mechanical Splices (굽힌 후 편 철근의 겹침 이음 및 기계적 이음을 갖는 벽-슬래브 접합부의 반복하중에 대한 거동)

  • Chun, Sung-Chul;Lee, Jin-Gon;Ha, Tae-Hun
    • Journal of the Korea Concrete Institute
    • /
    • 제24권3호
    • /
    • pp.275-283
    • /
    • 2012
  • Steel Plate for Rebar Connection was recently developed to splice rebars in delayed slab-wall joints in high-rise building, slurry wall-slab joints, temporary openings, etc. It consists of several couplers and a thin steel plate with shear key. Cyclic loading tests on slab-wall joints were conducted to verify structural behavior of the joints having Steel Plate for Rebar Connection. For comparison, joints with Rebend Connection and without splices were also tested. The joints with Steel Plate for Rebar Connection showed typical flexural behavior in the sequence of tension re-bar yielding, sufficient flexural deformation, crushing of compression concrete, and compression rebar buckling. However, the joints with Rebend Connection had more bond cracks in slabs faces and spalling in side cover-concrete, even though elastic behavior of the joints was similar to that of the joints with Steel Plate for Re-bar Connection. Consequently, the joints with Rebend Connection had less strengths and deformation capacities than the joints with Steel Plate for Re-bar Connection. In addition, stiffness of the joints with Rebend Connection degraded more rapidly than the other joints as cyclic loads were applied. This may be caused by low elastic modulus of re-straightened rebars and restraightening of kinked bar. For two types of diameters (13mm and 16mm) and two types of grades (SD300 and SD400) of rebars, the joints with Steel Plate for Rebar Connection had higher strength than nominal strength calculated from actual material properties. On the contrary, strengths of the joints with Rebend Connection decreased as bar diameter increased and as grade becames higher. Therefore, Rebend Connection should be used with caution in design and construction.

The Effect of Packing Method of Relining Material on the Flexural Strength of Denture Base Resin (첨상용 레진의 성형법이 의치상의 굴곡강도에 미치는 영향)

  • Kim, Min-Chul;Kim, Yu-Lee
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • 제27권2호
    • /
    • pp.197-207
    • /
    • 2011
  • The study aimed at examining how different reline resins affect flexural strength and flexural modulus of denture base. A total of 80 specimens ($64{\times}10{\times}3.3$ mm, according to ISO 1567:1999) of heat-polymerized resin, 40 specimens for (Lucitone199(Dentsply Int., NewYork, USA), SR Ivocap(Ivoclar AG, Schaan, Liechtenstein)) respectively, were polymerized according to the manufacturer's instructions and divided into eight groups(n = 10). Control group specimens remained intact. Specimens in the other groups were abraded on both sides to 2 mm thickness, and were relined in 1.3 mm thickness with 3 types of resins (Lucitone199(Dentsply), SR Ivocap(Ivoclar), and Rebase II(Tokuyama Co., Ltd, Tokyo, Japan)). All specimens were preserved in distilled water at $37^{\circ}C$ for 50 hours, and then were subjected to flexural strength testing in a universal testing machine using 3-point loading. A crosshead speed of 5 mm/min was used, and the distance between the supports was 50 mm. Data analyses included one-way analysis of variance(ANOVA) and the Tukey Honestly Significant Difference test (p=.05). Both heat-polymerized resin groups and auto-polymerized resin groups showed statistically low flexural strength and flexural modulus than control groups. Specimens relined with Lucitone 199 showed significantly higher flexural strength and flexural modulus than those relined with SR-Ivocap. Specimens relined with auto-polymerized resin showed significantly lower flexural strength and flexural modulus than those relined with heat-polymerized resin. Relining with heat-polymerized resins showed superior mechanical properties to relining with an auto-polymerized resin. Relining with the same heat-polymerized resin as the denture base does not affect mechanical properties of a denture. Lucitone199 using a compression-mould technique resulted in the highest flexural strength.

Biaxial Strain Analysis of Various Fixation Models in Porcine Aortic and Pulmonary Valves (돼지 대동맥 판막과 폐동맥 판막의 고정 방법에 따른 양방향 압력-신장도의 비교분석)

  • Cho, Sung-Kyu;Kim, Yong-Jin;Kim, Soo-Hwan;Choi, Seung-Hwa
    • Journal of Chest Surgery
    • /
    • 제42권5호
    • /
    • pp.566-575
    • /
    • 2009
  • Background: The function of a bioprosthetic heart valve is determined largely by the material properties of the valve cusps. The uniaxial tensile test has been studied extensively. This type of testing, however, does not replicate the natural biaxial loading condition. The objective of the present study was to investigate the regional variability of the biaxial strain versus pressure relationship based on the types of fixation liquid models. Material and Method: Porcine aortic valves and pulmonary valves were assigned to three groups: the untreated fresh group, the fixed with glutaraldehyde (GA) group, and the glutaraldehyde with solvent (e.g., ethanol) group. For each group we measured the radial and circumferential stretch characteristics of the valve as a function of pressure change. Result: Radial direction elasticity of porcine aortic and pulmonary valves were better than circumferential direction elasticity in fresh, GA fixed and GA+solvent fixed groups (p=0.00). Radial and circumferential direction elasticity of pulmonary valves were better than aortic valves in GA fixed, and GA+solvent fixed groups (p=0.00). Radial and circumferential direction elasticity of aortic valves were decreased after GA and GA+solvent fixation(p=0.00), except for circumferential elasticity of GA+solvent fixed valves (p=0.785). The radial (p=0.137) and circumferential (p=0.785) direction of elasticity of aortic valves were not significantly different between GA fixed. and GA+solvent fixed groups. Radial (p=0.910) and circumferential (p=0.718) direction of elasticity of pulmonary valve also showed no significant difference between GA fixed and GA+solvent fixed groups. Conclusion: When fixing porcine valves with GA, adding a solvent does not cause a loss of mechanical properties, but, does not improve elasticity either. Radial direction elasticity of porcine aortic and pulmonary valves was better than circumferential direction elasticity.

Effect of Intravenous Administration of Tramadol on the Minimum Alveolar Concentration of Isoflurane in Dogs (개에서 트라마돌의 정맥투여가 아이소플루란의 최소폐포농도에 미치는 영향)

  • Seok, Seong-Hoon;Park, Se-Jin;Lee, Seung-Yong;Jin, So-Young;Kim, Young-Ki;Hwang, Jae-Min;Lee, Hee-Chun;Yeon, Seong-Chan
    • Journal of Veterinary Clinics
    • /
    • 제32권4호
    • /
    • pp.308-312
    • /
    • 2015
  • This study was aimed to evaluate the effects of tramadol hydrochloride on the minimum alveolar concentration of isoflurane ($MAC_{ISO}$) in dogs. Six healthy, female German shepherd dogs (aged 1-2 years) were used in this study. Anesthesia was induced by mask induction and maintained with isoflurane in oxygen. Mechanical ventilation maintained the end-tidal $CO_2$ partial pressure ($P_{ET}CO_2$) from 35 to 45 mmHg throughout the study. A baseline $MAC_{ISO}$ ($MAC_{ISO}B$) was determined starting 45 minutes after induction of anesthesia by clamping a pedal digit until gross purposeful movement was detected. After $MAC_{ISO}B$ determination, dogs received a tramadol loading dose of 3 mg/kg followed by a continuous rate infusion (CRI) of 2.6 mg/kg/h. The determination of $MAC_{ISO}$ after administration of tramadol ($MAC_{ISO}T$) began 20 min after the start of the CRI. Arterial blood pressure and heart rate were recorded continuously and arterial blood samples for blood gas analysis were collected at the end of the equilibration period. Mean ${\pm}$ SD values for the $MAC_{ISO}B$ and $MAC_{ISO}T$ were $1.33{\pm}0.04%$ and $1.23{\pm}0.04%$, respectively. The $MAC_{ISO}B$ decreased significantly by $7.5{\pm}0.2%$ (P < 0.05) after administration of tramadol. The mean heart rate and arterial blood pressure of six dogs were not changed significantly after tramadol administration. The blood gas levels remained constant during the study. In conclusion, tramadol could significantly reduce $MAC_{ISO}$ without depression of cardiorespiratory function. Thus, the use of tramadol on inhalation anesthesia with isoflurane in dogs can improve the stability of anesthesia and the quality of recovery.