• 제목/요약/키워드: Mechanical hydroforming

검색결과 58건 처리시간 0.026초

국부적 변형 집중 저감을 통한 액압 성형성 개선연구 (Enhancement of Hydroformability Through the Reduction of the Local Strain Concentration)

  • 신세계로;주병돈;문영훈
    • 소성∙가공
    • /
    • 제23권5호
    • /
    • pp.317-322
    • /
    • 2014
  • Bursting during tube hydroforming is preceded by localized necking. The retardation of the initiation of necking is a means to enhance hydroformability. Since high strain gradients occur at the necking sites, a decrease in local strain gradients is an effective way to retard the initiation of necking. In the current study, the expansion at potential necking sites was intentionally restricted in order to reduce the strain gradient at potential necking sites. From the strain distribution obtained from FEM, it is possible to determine strain concentrated zones, which are the potential necking sites. Prior to the hydroforming of a trailing arm, an incompressible material(such as lead) is attached to the tube where the strain-concentrated zone would contact the die. Due to the incompressibility of lead, the tube expansion is locally restricted, and the resultant strain extends to adjacent regions of the tube during hydroforming. After the first stage of hydroforming, the lead is removed from the tube, and the hydroforming continues to the final targeted shape without any local restriction. This method was successfully used to fabricate a complex shaped automotive trailing arm that had previously failed during traditional hydroforming fabrication.

대형 상용차 앞차축 액슬 하이드로포밍 공법 적용 연구 (The study of adopting the hydroforming method in the front axle of the commercial vehicle)

  • 전동현;김윤규;나상묵;박두수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.169-173
    • /
    • 2008
  • This study is concerned with adopting the hydroforming method in the front axle of the commercial vehicle. Generally the front axle of the commercial vehicle is made bγ the several operations of press forging. This product supports the big weight of the vehicle and load. The weight of the press forging parts is also so more than it of the press parts of the passenger car. So, we have studied the hydroforming method to lessen the weight of the front axle of the commercial vehicle. To apply the hydroforming method in the commercial vehicle, we had to use the operation of reducing the diameter of the used tube prior to the hydorforming operation.

  • PDF

가변 단면을 가지는 비대칭 얇은 관 부품의 액압성형 연구 (Hydroforming of a Non-axisymmetric Thin-walled Tubular Component with Variable Cross Sections)

  • 강형석;주병돈;황태우;문영훈
    • 소성∙가공
    • /
    • 제24권5호
    • /
    • pp.368-374
    • /
    • 2015
  • Hydroforming of a non-axisymmetric thin-walled tubular component with variable cross sections was analyzed. In order to solve the sealing problem which occurred due to the thin and non-axisymmetric shape, the use of a lead patch on the punch, which had been successful in hydroforming of thin tubes, was evaluated. A lead patch was attached to the punch to solve the sealing problem, which was caused by the stress gradient in the non-axisymmetric shape. FEM and experiments were also performed to analyze these sealing problems associated with the punch shape and non-axisymmetric shape. Finally, the lead patch was attached at tube surface where intensive local strain concentration would occur to enhance the hydroformability. These methods were successfully used to fabricate non-axisymmetric thin-walled tubular component with variable cross sections that had previously failed during traditional hydroforming.

유한요소해석을 이용한 테일파이프의 튜브하이드로포밍 공정 개발 연구 (Development of Tube Hydroforming for a Tail Pipe Using FE Analysis)

  • 한수식
    • 소성∙가공
    • /
    • 제25권3호
    • /
    • pp.176-181
    • /
    • 2016
  • The exhaust tail pipe is the only visible part of the exhaust system on a vehicle. The conventional way to make the tail pipe is welding after stamping. There are various problems that occur during the stamping of stainless steel sheets such as scratching and local fracture. Problems during welding can also occur due to poor weldability. Tube hydroforming can be a solution, which eliminates these problems. The current study deals with the development of tube hydroforming for a vehicle tail pipe using finite element analysis for a free-feeding method. The current study focuses on the development of a proper load path for the tail pipe hydroforming and how bending influences the subsequent processing steps. The FE analysis results were compared with experimental results. This study shows the importance of bending and the necessity of considering bending when performing a tube hydroforming analysis.

액압 성형을 이용한 내부복합파형 고효율 이중관 제조 기술 (Manufacturing of High-Performance Double Layered Tube with Corrugated Internal Pattern via the Hydroforming Process)

  • 한상욱;김대용;문영훈
    • 소성∙가공
    • /
    • 제31권3호
    • /
    • pp.143-150
    • /
    • 2022
  • The purpose of this study was to investigate an innovative hydroforming process for the cost-effective manufacturing of double layered tube with circumferentially corrugated patterns. Conventional double pipe heat exchanger has relatively poor heat transfer efficiency because of the limited contact area resulting from the concentrically arranged simple cylindrical structure. As a promising alternative to enhance heat transfer efficiency, double layered tube with corrugated internal pattern was considered in this study. To fabricate corrugated inner tube, innovative tube hydroforming system was developed. The customized loading paths were established using the simulated forming pressure and contracting stroke at various bar diameters. Experimentally obtained cross-sectional profiles were analyzed to evaluate the reliability and applicability of the hydroformed tube with various patterns. The results demonstrate that the proposed hydroforming process can be a feasible alternative for manufacturing high-performance double-tube heat exchangers.

컴퓨터 시뮬레이션(CAE)을 이용한 자동차용 리어 서브-프레임의 하이드로-포밍 공정 개발 (Hydro-forming Process of Automotive Rear Sub-frame by Computer Simulation (CAE))

  • 김기주;성창원;백영남;이용헌;배대성;손일선
    • 한국자동차공학회논문집
    • /
    • 제16권3호
    • /
    • pp.38-43
    • /
    • 2008
  • The hydroforming technology has been spreaded dramatically in automotive industry last 10 years. Itmay cause many advantages to automotive applications in terms of better structural integrity of the parts, lower cost from fewer part count, material saving, weight reduction, lower springback, improved strength and durability and design flexibility. In this study, the whole process of rear sub-frame parts development by tube hydroforming using steel material having tensile strength of 440MPa grade is presented. At the part design stage, it requires feasibility study and process design aided by CAE (Computer Aided Design) to confirm hydroformability in details. Effects of parameters such as internal pressure, axial feeding and geometry shape in automotive rear sub-frame by hydroforming process were carefully investigated. Overall possibility of hydroformable sub-frame parts could be examined by cross sectional analyses. Moreover, it is essential to ensure the formability of tube material on every forming step such as pre-bending, preforming and hydroforming. In addition, all the components of prototyping tool are designed and interference with press is examined from the point of geometry and thinning.

알루미늄합금의 열간 액압성형법 성형성에 대한 가열조건의 영향도 분석 (The Effect of the Heating Conditions on the Warm Hydro-Formability of the Alumium Alloys)

  • 김봉준;박광수;류종수;손성만;문영훈
    • 열처리공학회지
    • /
    • 제18권3호
    • /
    • pp.172-176
    • /
    • 2005
  • Modern automobiles are built with a steadily increasing variety of materials and semifinished products. The traditional composition of steel sheet and cast iron is being replaced with other materials such as aluminum and magnesium. But low formability of these materials has prevented the application of the automotive components. The formability can be enhanced by conducting the warm hydroforming using induction heating device which can raise the temperature of the specimen very quickly. The specimen applied to the test is A6061, A7075 extruded tubes which belong to the age-hardenable aluminum alloys. But in the case of A6061 age hardening occurs at room temperature or at elevated temperatures before and after the forming process. In this study the effects of the heating condition such as heating time, preset temperature, holding time during die closing and forming time on the hydroformability are analyzed to evaluate the phenomena such as dynamic strain hardening and ageing hardening at high temperatures after the hydroforming process.

알루미늄 튜브의 열처리 조건에 따른 액압 성형성 연구 (Effects of Heat Treatment on Hydroformability of Aluminum Tubes)

  • 이문용;손성만;조완제;이상용
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 추계학술대회 논문집
    • /
    • pp.364-367
    • /
    • 2001
  • Recently social demands of fuel economy and environmental regulation require the development of light materials and new manufacturing technologies. In this point, aluminum tube hydroforming, which is satisfied with good strength-to-weight ratio and recyclability, is new innovative concept. but, up to now the level of that is relatively low. In this paper, we studied formability of different aluminum tubes in different heat treatments under internal pressure and axial feeding, and mechanical properties of aluminum tubes before and after hydroforming.

  • PDF

하이드로 임베딩시 연결요소의 회전을 통한 체결력 개선 연구 (Improvement of Connection Force in Hydro-Embedding Process Through the Rotational Piercing of the Connection Element)

  • 김봉준;김동규;김동진;문영훈
    • 대한기계학회논문집A
    • /
    • 제30권12호
    • /
    • pp.1503-1508
    • /
    • 2006
  • To increase the applicability and productivity of hydroforming process, hydro-embedding process was developed by combining the hydro-forming process with embedding process simultaneously. It is necessary in the automotive parts to form hollow bodies with connection elements which combine one part with another. The hydro-embedding process is embedding the connection element hydraulically during the operating steps of the hydroforming. In this study, technique of rotational piercing is added on the existing hydro-embedding to increase the connection force of hydro-embedded element. To estimate the feasibility of new trial process, integrated researches on the hydro-embedding process technology have been performed by analyzing the deformed mode of the tubes and the optimal process parameters for various shapes of the connection elements.

하이드로포밍을 이용한 엔진크래들 최적설계 (The Optimization Design of Engine Cradle using Hydroforming)

  • 오진호;이규민;최한호;박성호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.571-575
    • /
    • 2008
  • An engine cradle is a quite important structural assembly for supporting the engine, suspension and steering parts of vehicle and absorbing the vibrations during the drive and the shock in the car crash. Recently, the engine cradle having structural stiffness enough to support the surrounding parts and absorbing the shock of collision has been widely used. The hydroforming technology may cause many advantages to automotive applications in terms of better structural integrity of parts, reduction of production cost, weight reduction, material saving, reduction in the number of joining processes and improvement of reliability. We focus on increasing the durability and the dynamic performance of engine cradle. For realizing this objective, several optimization design techniques such as shape, size, and topology optimization are performed. This optimization scheme based on the sensitivity can provide distinguished performance improvement in using hydroforming.

  • PDF