• Title/Summary/Keyword: Mechanical engineering

Search Result 42,786, Processing Time 0.099 seconds

Recent Progress of Ti3Ci2Tix MXene Electrode Based Self-Healing Application (Ti3Ci2Tix MXene 기반 전극 소재의 자가 치유 적용 기술 개발 동향)

  • Jun Sang Choi;Seung-Boo Jung;Jong-Woong Kim
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.3
    • /
    • pp.20-34
    • /
    • 2023
  • Single or multi-layered two-dimensional (2D) materials, with thicknesses in the order of a few nanometers, have garnered substantial attention across diverse research domains owing to their distinct properties, including electrical conductivity, flexibility, and optical transparency. These materials are frequently subjected to repetitive mechanical actions in applications like electronic skin (E-Skin) and smart textiles. Moreover, they are often exposed to external factors like temperature, humidity, and pressure, which can lead to a deterioration in component durability and lifespan. Consequently, significant research efforts are directed towards developing self-healing properties in these components. Notably, recent investigations have revealed promising outcomes in the field of self-healing composite materials, with Ti3Ci2Tix MXene being a prominent component among the myriad of available 2D materials. In this paper, we aim to introduce various synthesis methods and characteristics of Ti3Ci2Tix MXene, followed by an exploration of self-healing application technologies based on Ti3Ci2Tix MXene.

Study of Non Pressure and Pressure Foam of Bio-based Polymer Containing Blend (바이오 기반 폴리머가 포함된 블렌드의 상압 및 가압 발포 연구)

  • Dong-Hun Han;Young-Min Kim;Danbi Lee;Seongho Son;Geon-hee Seo;Hanseong Kim
    • Composites Research
    • /
    • v.36 no.5
    • /
    • pp.297-302
    • /
    • 2023
  • There are several methods for shaping foams, but the most commonly used methods involve the use of resin mixed with a foaming agent, which is then foamed under high temperature and pressure in the case of compression foaming, or foamed under high temperature without applying pressure in the case of atmospheric foaming. The polymers used for foaming require design and analysis of optimal foaming conditions in order to achieve foaming under ambient pressure. Environmentally friendly bio-based polymers face challenges when it comes to foaming on their own, which has led to ongoing research in blending them with resins capable of traditional foam production. This study investigates changes in the characteristics of bio-based polymer-EVA blend foams based on variations in the content of bio-based polymers and explores the optimal foaming conditions according to crosslinking. The correlation between foaming characteristics and mechanical properties of the foams was examined. Through this research, we gained insights into how the content of bio-based polymers affects the properties of foams containing bio-based polymers and identified differences between ambient pressure and high-pressure foaming processes. Additionally, the feasibility of commercializing bio-based polymer-EVA composite foams was confirmed.

Progressive Damage and Failure Analysis of Open-Hole Composite Specimens Under Compressive Loading Using Finite Element Analysis (유한요소해석을 이용한 압축 하중을 받는 오픈 홀 복합재 시편의 점진적 손상 및 파손 분석)

  • Young Cheol Kim;Geunsu Joo;Hong-Kyu Jang;Jinbong Kim;Min-Gyu Kang;Woo-Kyoung Lee;Ji Hoon Kim
    • Composites Research
    • /
    • v.36 no.5
    • /
    • pp.303-309
    • /
    • 2023
  • In this paper, a Progressive Damage and Failure Analysis (PDFA) modeling method was developed using ABAQUS/EXPLICIT to predict in-plane damage and delamination for Open-Hole Compression (OHC) testing. The proposed PDFA model was constructed based on Hashin criteria and cohesive behavior. The strength and stiffness of OHC specimens with three types of stacking sequences [(45/-45/02)3]s , [(45/0/-45/90)3]s and [45/-45/0/45/-45/90/(45/-45)2]s were compared to comprehensively evaluate the validity of the Finite Element(FE) model of PDFA. The strength and stiffness of the OHC specimens were predicted relatively well, with less than a percentage error 10.0 %. For the numerical simulation case for each layup, the damage initiation/evolution of OHC specimens were evaluated for delamination and tension/compression matrix damage before and after failure.

Application of CFD Methods to Improve Performance of Denitrification Facility (탈질 설비의 성능 개선을 위한 CFD 기법 적용에 관한 연구)

  • Min-Kyu Kim;Hee-Taeg Chung
    • Clean Technology
    • /
    • v.29 no.4
    • /
    • pp.305-312
    • /
    • 2023
  • Due to the strengthening of environmental requirements, aging denitrification facilities need to improve their performance. The present study aims to suggest the possibility of improving performance using computational analysis techniques. This involved modifying both the geometric design and the operating conditions, including the flow path shape of the equipment such as the inlet guide vane and the curved diffusing part, and the flow control of the ammonia injection nozzle. The conditions presented in this study were compared with existing operating conditions in terms of the flow uniformity, the NH3/NO molar ratio of the mixed gas flowing into the catalyst layer, and the total pressure drop of the facility. The flow field applied in the computational analysis ranged from the outlet of the economizer in the combustion furnace to the inlet of the air preheater, the full domain of the denitrification facility. The performances were derived by solving the flow fields using ANSYS-Fluent and the injection amount of ammonia was adjusted for each nozzle using Design Xplorer. Compared to the denitrification performances of the equipment currently in operation, the conditions proposed in this study showed an improvement in the flow uniformity and NH3/NO composition ratio by 45.1% and 8.7%, respectively, but the total pressure drop increased by 1.24%.

A Study of Control for 3 Phase BLDC Motor using Control Methodology of DC Motor (직류전동기 제어기법을 적용한 3상 BLDC 모터 제어에 관한 연구)

  • Jin-Man Kim;Taek-Kun Nam
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.6
    • /
    • pp.704-711
    • /
    • 2023
  • This paper discusses the control method of BLDC(Brushless Direct Current) motor that has similar electrical characteristics with DC motor but has improved its lifespan and reliability. The BLDC motor can improve durability and speed stability by using rotor position information to eliminate commutators that require mechanical contact with DC motors. In this study, a controller for a DC motor was designed based on the fact that the current in the windings of a BLDC motor is a square-wave current like the current flowing in the armature of a DC motor. Next, the designed controller was applied to a 3-phase BLDC motor to confirm the effectiveness of the controller. In detail, a single-phase DC motor with electrical parameter values of a three-phase BLDC motor was modeled and a PI controller for motor speed control was designed by applying the root locus method to the derived system. The speed control simulation of the DC motor was performed to confirm the validity of the controller, and the same controller was applied to the speed control of the 3-phase BLDC motor implemented in MATLAB. From the simulation, similar results of the DC motor were obtained in the 3 phase BLDC motor and confirmed the usefulness of the proposed control scheme.

Proximal Policy Optimization Reinforcement Learning based Optimal Path Planning Study of Surion Agent against Enemy Air Defense Threats (근접 정책 최적화 기반의 적 대공 방어 위협하 수리온 에이전트의 최적 기동경로 도출 연구)

  • Jae-Hwan Kim;Jong-Hwan Kim
    • Journal of the Korea Society for Simulation
    • /
    • v.33 no.2
    • /
    • pp.37-44
    • /
    • 2024
  • The Korean Helicopter Development Program has successfully introduced the Surion helicopter, a versatile multi-domain operational aircraft that replaces the aging UH-1 and 500MD helicopters. Specifically designed for maneuverability, the Surion plays a crucial role in low-altitude tactical maneuvers for personnel transportation and specific missions, emphasizing the helicopter's survivability. Despite the significance of its low-altitude tactical maneuver capability, there is a notable gap in research focusing on multi-mission tactical maneuvers that consider the risk factors associated with deploying the Surion in the presence of enemy air defenses. This study addresses this gap by exploring a method to enhance the Surion's low-altitude maneuvering paths, incorporating information about enemy air defenses. Leveraging the Proximal Policy Optimization (PPO) algorithm, a reinforcement learning-based approach, the research aims to optimize the helicopter's path planning. Visualized experiments were conducted using a Surion model implemented in the Unity environment and ML-Agents library. The proposed method resulted in a rapid and stable policy convergence for generating optimal maneuvering paths for the Surion. The experiments, based on two key criteria, "operation time" and "minimum damage," revealed distinct optimal paths. This divergence suggests the potential for effective tactical maneuvers in low-altitude situations, considering the risk factors associated with enemy air defenses. Importantly, the Surion's capability for remote control in all directions enhances its adaptability in complex operational environments.

Exploring Factors to Minimize Hallucination Phenomena in Generative AI - Focusing on Consumer Emotion and Experience Analysis - (생성형AI의 환각현상 최소화를 위한 요인 탐색 연구 - 소비자의 감성·경험 분석을 중심으로-)

  • Jinho Ahn;Wookwhan Jung
    • Journal of Service Research and Studies
    • /
    • v.14 no.1
    • /
    • pp.77-90
    • /
    • 2024
  • This research aims to investigate methods of leveraging generative artificial intelligence in service sectors where consumer sentiment and experience are paramount, focusing on minimizing hallucination phenomena during usage and developing strategic services tailored to consumer sentiment and experiences. To this end, the study examined both mechanical approaches and user-generated prompts, experimenting with factors such as business item definition, provision of persona characteristics, examples and context-specific imperative verbs, and the specification of output formats and tone concepts. The research explores how generative AI can contribute to enhancing the accuracy of personalized content and user satisfaction. Moreover, these approaches play a crucial role in addressing issues related to hallucination phenomena that may arise when applying generative AI in real services, contributing to consumer service innovation through generative AI. The findings demonstrate the significant role generative AI can play in richly interpreting consumer sentiment and experiences, broadening the potential for application across various industry sectors and suggesting new directions for consumer sentiment and experience strategies beyond technological advancements. However, as this research is based on the relatively novel field of generative AI technology, there are many areas where it falls short. Future studies need to explore the generalizability of research factors and the conditional effects in more diverse industrial settings. Additionally, with the rapid advancement of AI technology, continuous research into new forms of hallucination symptoms and the development of new strategies to address them will be necessary.

Clinical and Imaging Characteristics of SARS-CoV-2 Breakthrough Infection in Hospitalized Immunocompromised Patients

  • Jong Eun Lee;Jinwoo Kim;Minhee Hwang;Yun-Hyeon Kim;Myung Jin Chung;Won Gi Jeong;Yeon Joo Jeong
    • Korean Journal of Radiology
    • /
    • v.25 no.5
    • /
    • pp.481-492
    • /
    • 2024
  • Objective: To evaluate the clinical and imaging characteristics of SARS-CoV-2 breakthrough infection in hospitalized immunocompromised patients in comparison with immunocompetent patients. Materials and Methods: This retrospective study analyzed consecutive adult patients hospitalized for COVID-19 who received at least one dose of the SARS-CoV-2 vaccine at two academic medical centers between June 2021 and December 2022. Immunocompromised patients (with active solid organ cancer, active hematologic cancer, active immune-mediated inflammatory disease, status post solid organ transplantation, or acquired immune deficiency syndrome) were compared with immunocompetent patients. Multivariable logistic regression analysis was performed to evaluate the effect of immune status on severe clinical outcomes (in-hospital death, mechanical ventilation, or intensive care unit admission), severe radiologic pneumonia (≥ 25% of lung involvement), and typical CT pneumonia. Results: Of 2218 patients (mean age, 69.5 ± 16.1 years), 274 (12.4%), and 1944 (87.6%) were immunocompromised an immunocompetent, respectively. Patients with active solid organ cancer and patients status post solid organ transplantation had significantly higher risks for severe clinical outcomes (adjusted odds ratio = 1.58 [95% confidence interval {CI}, 1.01-2.47], P = 0.042; and 3.12 [95% CI, 1.47-6.60], P = 0.003, respectively). Patient status post solid organ transplantation and patients with active hematologic cancer were associated with increased risks for severe pneumonia based on chest radiographs (2.96 [95% CI, 1.54-5.67], P = 0.001; and 2.87 [95% CI, 1.50-5.49], P = 0.001, respectively) and for typical CT pneumonia (9.03 [95% CI, 2.49-32.66], P < 0.001; and 4.18 [95% CI, 1.70-10.25], P = 0.002, respectively). Conclusion: Immunocompromised patients with COVID-19 breakthrough infection showed an increased risk of severe clinical outcome, severe pneumonia based on chest radiographs, and typical CT pneumonia. In particular, patients status post solid organ transplantation was specifically found to be associated with a higher risk of all three outcomes than hospitalized immunocompetent patients.

Qualitative and Quantitative Magnetic Resonance Imaging Phenotypes May Predict CDKN2A/B Homozygous Deletion Status in Isocitrate Dehydrogenase-Mutant Astrocytomas: A Multicenter Study

  • Yae Won Park;Ki Sung Park;Ji Eun Park;Sung Soo Ahn;Inho Park;Ho Sung Kim;Jong Hee Chang;Seung-Koo Lee;Se Hoon Kim
    • Korean Journal of Radiology
    • /
    • v.24 no.2
    • /
    • pp.133-144
    • /
    • 2023
  • Objective: Cyclin-dependent kinase inhibitor (CDKN)2A/B homozygous deletion is a key molecular marker of isocitrate dehydrogenase (IDH)-mutant astrocytomas in the 2021 World Health Organization. We aimed to investigate whether qualitative and quantitative MRI parameters can predict CDKN2A/B homozygous deletion status in IDH-mutant astrocytomas. Materials and Methods: Preoperative MRI data of 88 patients (mean age ± standard deviation, 42.0 ± 11.9 years; 40 females and 48 males) with IDH-mutant astrocytomas (76 without and 12 with CDKN2A/B homozygous deletion) from two institutions were included. A qualitative imaging assessment was performed. Mean apparent diffusion coefficient (ADC), 5th percentile of ADC, mean normalized cerebral blood volume (nCBV), and 95th percentile of nCBV were assessed via automatic tumor segmentation. Logistic regression was performed to determine the factors associated with CDKN2A/B homozygous deletion in all 88 patients and a subgroup of 47 patients with histological grades 3 and 4. The discrimination performance of the logistic regression models was evaluated using the area under the receiver operating characteristic curve (AUC). Results: In multivariable analysis of all patients, infiltrative pattern (odds ratio [OR] = 4.25, p = 0.034), maximal diameter (OR = 1.07, p = 0.013), and 95th percentile of nCBV (OR = 1.34, p = 0.049) were independent predictors of CDKN2A/B homozygous deletion. The AUC, accuracy, sensitivity, and specificity of the corresponding model were 0.83 (95% confidence interval [CI], 0.72-0.91), 90.4%, 83.3%, and 75.0%, respectively. On multivariable analysis of the subgroup with histological grades 3 and 4, infiltrative pattern (OR = 10.39, p = 0.012) and 95th percentile of nCBV (OR = 1.24, p = 0.047) were independent predictors of CDKN2A/B homozygous deletion, with an AUC accuracy, sensitivity, and specificity of the corresponding model of 0.76 (95% CI, 0.60-0.88), 87.8%, 80.0%, and 58.1%, respectively. Conclusion: The presence of an infiltrative pattern, larger maximal diameter, and higher 95th percentile of the nCBV may be useful MRI biomarkers for CDKN2A/B homozygous deletion in IDH-mutant astrocytomas.

Analysis of Autonomous Vehicles Risk Cases for Developing Level 4+ Autonomous Driving Test Scenarios: Focusing on Perceptual Blind (Lv 4+ 자율주행 테스트 시나리오 개발을 위한 자율주행차량 위험 사례 분석: 인지 음영을 중심으로)

  • Seung min Oh;Jae hee Choi;Ki tae Jang;Jin won Yoon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.2
    • /
    • pp.173-188
    • /
    • 2024
  • With the advancement of autonomous vehicle (AV) technology, autonomous driving on real roads has become feasible. However, there are challenges in achieving complete autonomy due to perceptual blind areas, which occur when the AV's sensory range or capabilities are limited or impaired by surrounding objects or environmental factors. This study aims to analyze AV accident patterns and safety issues of perceptual blind area that may occur in urban areas, with the goal of developing test scenarios for Level 4+ autonomous driving. It utilized AV accident data from the California Department of Motor Vehicles (DMV) to compare accident patterns and characteristics between AVs and conventional vehicles based on activation status of autonomous mode. It also categorized AV disengagement data to identify types and real-world cases of disengagements caused by perceptual blind areas. The analysis revealed that AVs exhibit different accident types due to their safe driving maneuvers, and three types of perceptual blind area scenarios were identified. The findings of this study serve as crucial foundational data for developing Level 4+ autonomous driving test scenarios, enabling the design of efficient strategies to mitigate perceptual blind areas in various scenarios. This, in turn, is expected to contribute to the effective evaluation and enhancement of AV driving safety on real roads.