• Title/Summary/Keyword: Mechanical and Forming Characteristics

Search Result 245, Processing Time 0.023 seconds

Mechanical and microstructural characteristics of a high-strength boron-alloyed steel for hot press forming (고온성형 위한 고강도보론강의 기계적 특성 및 마이크로구조 연구)

  • Lee, Jong-Shin;Chae, Myoung-Su;Park, Chun-Dal;Kim, Young-Suk
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1355-1360
    • /
    • 2007
  • The use of high strength steels are gradually increasing to reduce the weight of automobile to improve the environmental problems and collision safety. To encounter the traditional disadvantages of high strength steels like as a poor formability and high springback, hot press forming has been developed. By this method, the strength of steel sheet is increased about three times of original one through die quenching process. In order to the design of hot press forming tools by using numerical simulation, the knowledge of mechanical and microstructural characteristics are required. This study show the mechanical and microstructural characteristics of a high strength boron-alloyed steel according to the various quenching conditions.

  • PDF

Mechanical and Forming Characteristics of High-Strength Boron-Alloyed Steel with Hot Forming (핫 포밍을 이용한 고강도 보론 첨가 강의 기계적 및 성형 특성 평가)

  • Chae, M.S.;Lee, G.D.;Suh, Y.S.;Lee, K.H.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.18 no.3
    • /
    • pp.236-244
    • /
    • 2009
  • In response to growing environmental and collision-safety concerns, the automotive industry has gradually used high-strength and ultla-high-strength steels to reduce the weight of automobiles. In order to overcome inherent process disadvantages of these materials such as poor formability and high springback at room temperature, hot forming has recently been developed and adopted to produce some important structural parts in automobiles. This method enables manufacturing of components with complex geometric shapes with minimal springback. In addition, a quenching process may enhance the material strength by more than two times. This paper investigates mechanical and forming characteristics of high-strength boron-alloyed steel with hot forming, in terms of hardness, microstructure, residual stress, and springback. In order to compare with experimental results, a finite element analysis of hot forming process coupled with phase transformation and heat transfer was carried out using DEFORM-3D V6.1 and also, to predict high temperature mechanical properties and flow curves for different phases, a material properties modeler, JMatPro was used.

A study on the fiber orientation and mechanical characteristics of injection molded fiber-reinforced plastic for the rigidity improvement of automotive parts (자동차 부품의 강성 보강을 위한 섬유강화 플라스틱 사출성형품의 섬유 배향 및 기계적 특성에 관한 연구)

  • Eui-Chul Jeong;Yong-Dae Kim;Jeong-Won Lee;Seok-Kwan Hong;Sung-Hee Lee
    • Design & Manufacturing
    • /
    • v.16 no.4
    • /
    • pp.24-33
    • /
    • 2022
  • Fiber-reinforced plastics(FRPs) have excellent specific stiffness and strength, so they are usually used as automotive parts that require high rigidity and lightweight instead of metal. However, it is difficult to predict the mechanical properties of injection molded parts due to the fiber orientation and breakage of FRPs. In this paper, the fiber orientation characteristics and mechanical properties of injection molded specimens were evaluated in order to fabricate automotive transmission side covers with FRPs and design a rib structure for improvement of their rigidity. The test molds were designed and manufactured to confirm the fiber orientation characteristics of each position of the injection molded standard plate-shaped specimens, and the tensile properties of the specimens were evaluated according to the injection molding conditions and directions of specimens. A gusset-rib structure was designed to improve the additional structural rigidity of the target products, and a proper rib structure was selected through the flexural tests of the rib-structured specimens. Based on the evaluation of fiber orientation and mechanical characteristics, the optimization analyses of gate location were performed to minimize the warpage of target products. Also, the deformation analyses against the internal pressure of target product were performed to confirm the rigidity improvement by gusset-rib structure. As a result, it could be confirmed that the deformation was reduced by 27~37% compared to the previous model, when the gusset-rib structure was applied to the joining part of the target products.

Characteristics of Hot Forming of Magnesium Alloys for Light-weight Valves (경량 밸브 제조용 마그네슘 합금의 고온 성형 특성)

  • Park, Joon-Hong;Lee, Joon-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.4
    • /
    • pp.173-179
    • /
    • 2012
  • In recent years, Magnesium(Mg) and its alloys have become a center of special interest in the automotive industry. Due to their high specific mechanical properties, they offer a significant weight saving potential in modern vehicle constructions. Most Mg alloys show very good machinability and processability, and even the most complicated die casting parts can be easily produced. In this study, Microstructure, Vickers hardness and tensile tests were examined and performed for each specimen to verify effects of forming conditions. Also to verify upsettability and forming limit of the specimen at room temperature and elevated temperature, upsetting experiments were performed. For comparison, experiments at elevated temperature were performed for various Mg alloy, such as AZ31, AZ91, and AM50. The experimental results were compared with those of CAE analysis to propose forming limit of Magnesium alloys.

A study on forming characteristics of magnesium alloy (AZ31) on various temperatures (마스네슘 합금 판재 (AZ31)의 온도별 성형 특성 분석)

  • LEE, Han-Gyu;La, Won-Bin;Hong, So-Dam;LEE, Chang-Whan
    • Design & Manufacturing
    • /
    • v.12 no.3
    • /
    • pp.42-47
    • /
    • 2018
  • Recently, in the surge of global environmental issues, there has been a great attention to lightweight materials in purpose of saving energy. Magnesium alloys not only have low specific gravity, and superb specific stiffness, but are also excellent in blocking vibrations and electromagnetic waves. So demand for this material is getting bigger rapidly throughout the industry. In this study, we examined the improvement of formability of magnesium alloy AZ31 material in warm working. Drawing, bending and shearing process were carried out by varying the forming temperature and the forming speed, and the influence of the variables on each process was studied. In the experiments, the high forming temperature and low forming speed results in high formability in the drawing process and the bending process. In the shearing process, as the forming temperature increases, the length of the fracture decreases.

Effect of bound water on mechanical properties of typical subgrade soils in southern China

  • Ding, Le;Zhang, Junhui;Deng, Zonghuang
    • Geomechanics and Engineering
    • /
    • v.27 no.6
    • /
    • pp.573-582
    • /
    • 2021
  • From the effect of bound water, this study aims to seek the potential reasons for difference of mechanical experiment results of subgrades soils. To attain the comparatively test condition of bound water, dry forming (DF) and wet forming (WF) were used in the specimen forming process before testing, series of laboratory tests, i.e., CBR tests, direct shear tests and compaction tests. The measured optimal moisture contents, maximum dry densities, CBR, cohesion c, and internal friction angle 𝜑 were given contrastive analysis. Then to detect the adsorptive bound water in the subgrade soils, the thermal gravimetric and differential scanning calorimetry (TG-DSC) test were employed under different heating rates. The free water, loosely bound water and tightly bound water in soils were qualitatively and quantitatively analyzed. It was found that due to the different dehydration mechanics, the lost bound water in DF and WF process show their own characteristics. This may lead to the different mechanical properties of tested soils. The clayey particles have a great influence on the bound water adsorbed ability of subgrade soils. The more the clay content, the greater the difference of mechanical properties tested between the two forming methods. Moreover, in highway construction of southern China, the wet forming method is recommended for its higher authenticity in simulating the subgrade filed humidity.

Development of Automobile One-piece Lower-Arm Part by Thermo-Mechanical Coupled Analysis (열-소성 연계 해석을 이용한 자동차 로어암 부품 개발)

  • Son, H.S.;Kim, H.G.;Choi, B.K.;Cho, Y.R.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.218-221
    • /
    • 2008
  • Hot Press Forming (HPF), an advanced sheet forming method in which a high strength part can be produced by forming at high temperature and rapid cooling in dies, is one of the most successful forming process in producing components with complex geometric shape, high strength and a minimum of springback. In order to obtain effectively and accurately numerical finite element simulations of the actual HPF process, the flow stress of a boron steel in the austenitic state at elevated temperatures has been investigated with Gleeble system. To evaluate the formability of the thermo- mechanical material characteristics in the HPF process, the FLDo defined at the lowest point in the forming limit diagrams of a boron steel has been investigated. In addition, the simulation results of thermo-mechanical coupled analysis of an automobile one-piece lower-arm part are compared with the experimental ones to confirm the validity of the proposed simulations.

  • PDF

Effects of Inductor Shape in Steel Forming Process with High Frequency Induction Heating (유도가열을 이용한 강판성형공정에서 유도코일 형상의 효과)

  • Yang, Young-Soo;Bae, Kang-Yul;Shin, Hee-Yun
    • Journal of Welding and Joining
    • /
    • v.26 no.4
    • /
    • pp.66-72
    • /
    • 2008
  • Because of high intensity and easy controllability of the heat source, high frequency induction heating has been concerned and studied for the steel forming process in the ship building industry. However, the heating and forming characteristics have to be further properly modelled and analyzed for the process to be utilized with its optimal working parameters. In this study, a modelling with thermo-elasto-plastic analysis is performed using the FEM to study heat flow and deformation of the steel plate during the forming process with the electro-magnetic induction heating. The numerical model is then used to study the effect of the inductor shape on the magnitude of angular deformation of the plate during the forming process. It is revealed that the square shape of inductor induces the largest deformation among the rectangular inductors.

Characteristics of plate forming by flame heating for TMCP steel (TMCP 강재의 곡가공 특성)

  • Yun, Jung-Geun;Sin, Sang-Beom;Kim, Ha-Geun;Kim, Gyeong-Gyu
    • Proceedings of the KWS Conference
    • /
    • 2005.11a
    • /
    • pp.6-8
    • /
    • 2005
  • The purpose of this study is to evaluate characteristics of plate forming by flame heating for E and EH36 TMCP steel. The characteristics of interest were heat-formability of TMCP steel and mechanical properties of heated area. For a given dimension, heat-formability of TMCP steel was inferior to that of a conventional steel because TMCP steel required more heating passes and time. Angular distortion and transverse shrinkage of TMCP steel decreased with an increase in line heating speed for given heating conditions. The mechanical properties of TMCP steel after plate forming by flame heating were high enough to satisfy the requirements.

  • PDF

Study on the Friction Characteristics of Circular bead and rectangular bead in Drawbead Forming of Cold Rolled Steels for Automotive Parts (자동차용 냉간압연재의 드로우비드 성형시 비드 형상별 마찰특성에 관한 연구)

  • Kim D. W.;Kim W. T.;Lee D. H.;Moon Y. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.137-144
    • /
    • 2004
  • The drawbead is one of the most important factors in sheet metal forming for automotive parts. So clarifying the friction characteristics between sheets and drawbead is essential to improve the formability of sheet metal. Therefore in this study, drawbead friction test was performed at circular shape bead and rectangular shape bead. The results show that the tendency of drawing force for rectangular bead is nearly similar with circular bead and the drawing force is nearly proportional to friction coefficient.

  • PDF