• Title/Summary/Keyword: Mechanical alloying (MA)

Search Result 127, Processing Time 0.032 seconds

Analysis on Milling Behavior of Oxide Dispersion Strengthened Ni-based Atomizing Powder with Ni5Y Intermetallic Phase (Ni5Y 합금상이 형성된 Ni계 산화물 분산강화 아토마이징 분말의 밀링 거동 분석)

  • Park, Chun Woong;Byun, Jong Min;Choi, Won June;Kim, Young Do
    • Journal of Powder Materials
    • /
    • v.26 no.2
    • /
    • pp.101-106
    • /
    • 2019
  • Ni-based oxide dispersion strengthened (ODS) alloys have a higher usable temperature and better high-temperature mechanical properties than conventional superalloys. They are therefore being explored for applications in various fields such as those of aerospace and gas turbines. In general, ODS alloys are manufactured from alloy powders by mechanical alloying of element powders. However, our research team produces alloy powders in which the $Ni_5Y$ intermetallic phase is formed by an atomizing process. In this study, mechanical alloying was performed using a planetary mill to analyze the milling behavior of Ni-based oxide dispersions strengthened alloy powder in which the $Ni_5Y$ is the intermetallic phase. As the milling time increased, the $Ni_5Y$ intermetallic phase was refined. These results are confirmed by SEM and EPMA analysis on microstructure. In addition, it is confirmed that as the milling increased, the mechanical properties of Ni-based ODS alloy powder improve due to grain refinement by plastic deformation.

Phase Analysis of Mechanically Alloyed $\sigma$-VFe Alloy Powders by Neutron and X-ray Diffraction (기계적 합금화한 $\sigma$-VFe합금의 중성자 및 X선 회절에 의한 상분석)

  • Lee, Chung-Hyo;Jo, Jae-Mun;Lee, Sang-Jin;Sim, Hae-Seop;Lee, Chang-Hui
    • Korean Journal of Materials Research
    • /
    • v.11 no.8
    • /
    • pp.661-665
    • /
    • 2001
  • The mechanical alloying (MA) effect in $\sigma$-VFe intermetallic compound was studied by neutron and X-ray diffraction. The structure of MA $\sigma$-VFe powders were characterized by the X- ray diffraction with Cu- $K\alpha$ radiation and neutron diffraction with monochromatic neutrons of $1.835\AA$ using a high resolution powder diffractometer (HRPD). Mechanical alloying of $\sigma$-VFe compound gives rise to a dramatic structural change. After 60 hours of MA, the Fe-Fe distribution of the $\sigma$- phase VFe tetragonal structure with 30 atoms in a unit cell is found to change into that of the $\sigma$-(V,Fe) solid solution with bcc structure, which is a stable phase at elevated temperature above $1200^{\circ}C$. A comparison of X-ray diffraction data for the $\alpha$-phase has been also made with the corresponding neutron diffraction data. The (101) and (111) diffraction peaks of the $\sigma$-phase was clearly observed only in neutron diffraction pattern, which is believed to be a characteristic feature due to the chemical atomic ordering of $\sigma$- VFe phase.

  • PDF

Sintering of Mechanically Alloyed YSZ Nanocrystalline Powders

  • De la Torre, M. A. Lopez;Dura, O. J.;Hernandez, M.;Garcia-Cordobes, M.;Herranz, G.;Sanchez-Bautista, C.;Rodriguez, G. P.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.670-671
    • /
    • 2006
  • We report on the mechanical and structural properties of nanocrystalline 8% and 10% mol yttria stabilized zirconia (YSZ) obtained using mechanical alloying (MA). The as-milled powders show a body-centered cubic structure with grain sizes in the nanometer scale. After uniaxial pressing and sintering the compacts exhibit good mechanical properties. We discuss the correlation of these enhanced properties with the microstructural changes induced by heat treatment.

  • PDF

Preparation of β-FeSi2 Thermoelectric Materials by MA/SPS Process -Formation ofβ-FeSi2Phase- (MA/SPS 공정에 의한 β-FeSi2 열전재료의 제조(I) -β-FeSi2상의 형성-)

  • Kim, Hwan-Tae;Gwon, Yeong-Sun;Lee, Chung-Hyo
    • Korean Journal of Materials Research
    • /
    • v.12 no.3
    • /
    • pp.176-181
    • /
    • 2002
  • Fabrication of ${\beta}-FeSi_2$ was attempted by making use of the combined process of mechanical alloying (MA) and spark plasma sintering (SPS). MA was performed under the Ar gas atmosphere using mixed powders of pure iron and silicon having the mole fraction of 1:2. SPS process was performed at 800-85$0^{\circ}C$ with the applied pressure of 50MPa and the holding time was ranging from 0 to 30min. The mechanically alloyed powder by cyclic operation of rotor for 15hrs consisted of $\varepsilon$-FeSi and Si phases. When this mechanically alloyed powder was sintered by SPS process above 85$0^{\circ}C$, $\varepsilon$-FeSi and ${\alpha}-Fe_2Si_5$ phase were formed. Bulk product sintered at 82$0^{\circ}C$ for 30min consisted of ${beta}-FeSi_2$ phase with a small fraction of $\varepsilon$-FeSi and the density of sintered specimen was 75.3% theoretical density. It was considered that the MA/SPS combined process was effective for the preparation of ${\beta}-FeSi_2$ without heat treatment process after sintering.

Creep Properties of Grain Coarsened ODS MA NiAl (결정립 조대화된 기계적 합금화 ODS NiAl의 Creep 성질)

  • Eo, Sun-Cheol;Seo, Seong-Jae
    • Korean Journal of Materials Research
    • /
    • v.7 no.11
    • /
    • pp.942-950
    • /
    • 1997
  • NiAI기 산화물 분산강화(Oxide Dispersion Strengthende:ODS)합금을 기계적 합금화 (Mechanical Alloying: MA)방법으로 제조하였으며, 열간압축방법으로 성형하였다. 연이어 단순항온처리에 의한 정상결정립성장과 특성조건에서의 thermomechanical treatment 에 의한 이차재결정화를 유도하였다. 결정립 조대화된 ODSD MA NiAI의 creep 성질 및 이에 조대화된 미세조직은 creep 성질이 저하된 반면, 이차재결정화된 MA NiAI의 creep성질은 크게 향상되었다. 이 creep 성질의 향상은 이차재결정화의 특성인 급격한 결정립의 조대화, 분산상의 성장억제 및 grain aspect ratio의 증가에 기인한 것으로 사료되었다. 이차재결정화된 ODS MA NiAI의 creep또는 glide controlled dislocation creep임을 제시하지만, 전체 creep속도가 결정립 크기 및 grain aspect ratio의 영향을 크게 받은 것을 볼 때, 결정립계 미끄럼기구가 주 creep 기구와 조합되어 MA NiAI의 전체 creep기구에 영향을 준 것으로 추정할 수 있었다.

  • PDF

Thermal Stability of Mechanically Alloyed Al-(6~3wt.%)Cr-(3~6wt/%)Zr Alloys (기계적 합금화법으로 제조된 Al-(6~3wt.%)Cr-(3~6wt.%)Zr 합금의 열적 안정성)

  • Yang, Sang-Seon;Lee, Gwang-Min
    • Korean Journal of Materials Research
    • /
    • v.10 no.6
    • /
    • pp.403-408
    • /
    • 2000
  • The Al-Cr-Zr composite metal powders were prepared by mechanical alloying and consolidated by vacuum hot pressing. The microstructural characteristics and the thermal stability of the MA Al-Cr-Zr alloys were evaluated by means of microhardness measurement, XRD and TEM in order to develop high temperature, high strength aluminum alloys. The mechanical alloying was conducted in attritor with 300rpm for 20 hours. The density of the vacuum hot pressed Al-Cr-Zr alloy reached at 97% of theoretical one. After exposing at $300^{\circ}C$ for 100 hours, there is almost no variation in hardness change of the MA alloys. Even after exposing at $ 500^{\circ}C$ for 100 hours, the hardness of the alloy was decreased within 6% of the initial value. The fine stable $Al_3Zr\;and\; Al_{13}Cr_2$ intermetallics were formed at the stage of consolidation and heat treatment in aluminum matrix. The good thermal stability of the MA Al-Cr-Zr alloy can ab attributed to the role of the dispersoids, inhibiting grain growth of nanocrystalline, and the final grain size after heat treatment was less than 150nm.

  • PDF

Photocatalytic Behaviors of Transition Metal Ions Doped TiO2 Synthesized by Mechanical Alloying (기계적 합금화법을 이용한 전이금속 도핑에 따른 TiO2분말의 광촉매 특성)

  • Woo S.H.;Kim W.W.;Kim S.J.;Rhee C.K.
    • Journal of Powder Materials
    • /
    • v.12 no.4 s.51
    • /
    • pp.266-272
    • /
    • 2005
  • Transition metal ions($Ni^{2+}$, $Cr^{3+}$ and $V^{5+}$) doped $TiO_2$ nanostructured powders were synthesized by mechanical alloying(MA) to shift the adsorption threshold into the visible light region. The synthesized powders were characterized by XRD, SEM, TEM and BET for structural analysis, UV-Vis and photoluminescence spectrum for the optical study. Also, photocatalytic abilities were evaluated by decomposition of 4-chlorophenol(4CP) under ultraviolet and visible light irradiations. Optical studies showed that the absorption wavelength of transition metal ions doped $TiO_2$ powders moved to visible light range, which was believed to be induced by the energy level change due to the doping. Among the prepared $TiO_2$ powders, $NiO^{2+}$ doped $TiO_2$ powders, showed excellent photooxidative ability in 4CP decomposition.

A Study on Synthesis of Ni-Ti-B Alloy by Mechanical Alloying from Elemental Component Powder

  • Kim, Jung Geun;Park, Yong Ho
    • Journal of Powder Materials
    • /
    • v.23 no.3
    • /
    • pp.202-206
    • /
    • 2016
  • A Ni-Ti-B alloy powder prepared by mechanical alloying (MA) of individual Ni, Ti, and B components is examined with the aim of elucidating the phase transitions and crystallization during heat treatment. Ti and B atoms penetrating into the Ni lattice result in a Ni (Ti, B) solid solution and an amorphous phase. Differential thermal analysis (DTA) reveals peaks related to the decomposition of the metastable Ni (Ti, B) solid solution and the separation of equilibrium $Ni_3Ti$, $TiB_2$, and ${\tau}-Ni_20Ti_3B_6$ phases. The exothermal effects in the DTA curves move to lower temperatures with increasing milling time. The formation of a $TiB_2$ phase by annealing indicates that the mechanochemical reaction of the Ni-Ti-B alloy does not comply with the alloy composition in the ternary phase diagram, and Ti-B bonds are found to be more preferable than Ni-B bonds.

The Effect of $Y_2O_3$ Addition on the Mechanical Alloying of $Ni_3$Al ($Ni_3$Al의 기계적합금화에 미치는 $Y_2O_3$ 첨가의 영향)

  • 이상태
    • Journal of Powder Materials
    • /
    • v.4 no.3
    • /
    • pp.205-213
    • /
    • 1997
  • Mechanical alloying of $Ni_3Al$ and $Y_2O_3$ added ODS $Ni_3Al$ from elemental powders was investigated by the X-ray diffraction, differential scanning calorimeter, transmission electron microscopy and optical microscopy. The steady states of $Ni_3Al$ and ODS $Ni_3Al$ powders were reached after mechanical alloying with the condition of the ball-to-powder input ratio of 20:1 for 20 hours and 10 hours, respectively. The addition of nano-sized $Y_2O_3$ particles enhanced cold working and fracture, and subsequently accelerated MA of $Ni_3Al$ powders. DSC results of MAed $Ni_3Al$ powders showed four exothermic peaks at 14$0^{\circ}C$, 234$^{\circ}C$, 337$^{\circ}C$ and 385$^{\circ}C$. From the high temperature X-ray diffraction analysis, it was concluded that the peaks were resulted from the recovery solution of unalloyed Al in Ni, the formation of intermediate phase NiAl, and $LI_2$ ordering of MAed $Ni_3Al$ powders.

  • PDF

Effect of Fe Doping on Thermoelectric Properties of Mechanically Alloyed $CoSb_3$

  • Ur, Soon-Chul;Kwon, Joon-Chul;Kim, Il-Ho
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.957-958
    • /
    • 2006
  • Fe doped skutterudite $CoSb_3$ with a nominal composition of $Fe_xCo_{1-x}Sb_{12}(0{\leq}x{\leq}2.5)$ have been synthesized by mechanical alloying (MA) of elemental powders, followed by vacuum hot pressing. Phase transformations during mechanical alloying and vacuum hot pressing were systematically investigated using XRD. Single phase skutterudite was successfully produced by vacuum hot pressing using as-milled powders without subsequent annealing. However, second phase of $FeSb_2$ was found to exist in case of $x\geq2$, suggesting the solubility limit of Fe with Co in this system. Thermoelectric properties as functions of temperature and Fe contents were evaluated for the hot pressed specimens. Fe doping up to x=1.5 with Co in $Fe_xCo_{4-x}Sb_{12}$ appeared to increase thermoelectric figure of merit (ZT) and the maximum ZT was found to be 0.78 at 525K in this study.

  • PDF