• Title/Summary/Keyword: Mechanical actuator

Search Result 1,293, Processing Time 0.034 seconds

Behavior of the Solenoid Actuator for High-Voltage Circuit Breaker (고전압 차단기용 솔레노이드 액추에이터의 거동)

  • Yun S.;Ham Y.B.;Ahn B.K.;Kim G.D.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.1 no.3
    • /
    • pp.1-6
    • /
    • 2004
  • In the last few years, a considerable number of studies have been made on On-Off solenoid for fluid control. But, only few attempts have so far been made at solenoid actuator for high-voltage circuit breaker. In case of the high-pressure and high-flow system like high-voltage circuit breaker, a big size of On/Off solenoid is necessary which size is proportional to control pressure and flow rate. So, it is non-effective in the view point of system optimization. In this paper, On/Off solenoid actuator with the farce amplifier connected to the solenoid rod was proposed to get a high mechanical force and a fast response time. The magnetic force and the mechanical stress distributions were analysed using finite element analysis. The performances of suggested solenoid actuator were evaluated through the experimental results and compared with the analysis results.

  • PDF

Optimal Design of Air Compressor-Driving Quadratic Linear Actuator in Fuel Cell BOP System Using Orthogonal Arrays Matrix

  • Kim, Jae-Hee;Kim, Jin-Ho;Jang, Chang-Hwan
    • Journal of Magnetics
    • /
    • v.16 no.2
    • /
    • pp.120-124
    • /
    • 2011
  • The design of an air compressor-driving quadratic linear actuator in a fuel cell BOP system is studied using orthogonal techniques. The approach utilizes an orthogonal array for design of 'experiments', i.e. the scheme for numerical simulations using a finite element method. Eco-friendly energy is increasingly important due to the depletion of fossil fuels and environmental pollution. Among the new energy sources, fuel cell is spotlighted as renewable energy because it produces few dusts. The air compressor performance is directly related to the efficiency of the fuel cell BOP system has high power consumption. In this paper, an optimized technique using an orthogonal matrix is applied to the design problem to improve the performance of quadratic linear actuator.

Electromagnetic Design Methodology for MR Fluid Actuator (MR 유체 작동기의 전자기적 설계 방법)

  • Nam Yun-Joo;Moon Young-Jin;Lee Yuk-Hyung;Park Myeong-Kwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.10 s.253
    • /
    • pp.1305-1313
    • /
    • 2006
  • This paper presents an electromagnetic design methodology for the magneto-rheological (MR) fluid actuator. In order to improve the performance of the MR fluid actuator, the magnetic circuit including the MR fluid, the ferromagnetic material for flux path and the electromagnetic coil should be well designed, thereby the magnetic field intensity can be effectively supplied to the MR fluid. First of all, in order to improve the static characteristic, the length of the flux path is decreased by removing the unnecessary bulk of the yoke. Next, in order to improve the dynamic and hysteretic characteristics, the magnetic reluctance of the ferromagnetic material is increased by minimizing the cross section through which the flux passes. The effectiveness of the proposed design methodology is verified by the magnetic analysis and a series of basic experiments.

Analysis of Dynamic characteristic and design of permanent magnetic actuator (영구자석형 차단기의 특성해석 및 설계)

  • Seo J. H.;Kim H. K.;Joo S. W.;Hahn S. C.
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1040-1042
    • /
    • 2004
  • For past decade, medium voltage circuit breakers have used the spring-driven mechanical system for interrupting of electric power. However, these mechanisms have many disadvantages of high power consumption, mechanical control components and electrical switching ones for the coil current. Recently, the vacuum interrupter operated by permanent magnet actuator gives outlook on improved characteristic, higher reliability and cost price reduction as well as the feature of simple structure and few components. This paper deals with the dynamic characteristics of permanent magnet actuator used in the medium voltage distribution systems. Coupled finite element method is used to analysis the dynamic characteristics of permanent magnetic actuator and we compared with those of conventional ones

  • PDF

Design of leaf spring with high fatigue life applied to horizontal linear vibrating actuator (수평 선형 진동 모터에 적용 가능한 높은 피로 수명을 가진 판 스프링 설계)

  • Lee, Ki-Bum;Kim, Jin-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.12
    • /
    • pp.5684-5688
    • /
    • 2012
  • This paper aims to design the leaf spring of high fatigue life which guides the moving part of the horizontal linear vibrating actuator. The vertical linear vibrating actuator has been used as the vibration device for haptic and alarm function on smart phone. However, the vibrating actuator has a major cause on the limitation to make smart phone slim because of its own characteristic of vertical direction vibration. The horizontally linear vibrating actuator for smart phone slimness has been developed in recent years. One of the most significant parts of horizontal vibrating linear actuator is the guide spring which supports moving part of actuator and enables actuator to vibrate elastically. Various types of leaf springs were designed and analyzed to get the required stiffness with high fatigue life through the stress analysis using commercial structural analysis program, ANSYS. The experiments were performed with prototypes to measure vibration acceleration and life time of leaf spring.

최근 Micro Piezoelectric Actuator 연구 동향

  • 박준식;박효덕;강성군
    • Ceramist
    • /
    • v.7 no.3
    • /
    • pp.38-47
    • /
    • 2004
  • 최근 micro structure, micro sensor, micro actuator 및 microelectronics 등을 활용하는 microelectromecha-nical systems (MEMS) 기술은 마이크로 로봇, micro manipulation, 광학 소자 및 시스템, 유체, 열, 바이오 및 화학공정 등을 위한 시스템 그리고 atomic force와 scanning tunneling microscope 등에 사용되는 다양한 소자 등 많은 잠재력을 가지고 있다. 이들 응용 분야 들은 micro actuator와 같은 mechanical power source가 요구되는 경우가 있다. 압전 특성을 포함하는 강유전체 재료는 이러한 micro actuator를 위해 여러 가지 다양한 장점을 지니고 있는데, 이들을 정리하면 다음과 같다. (중략)

  • PDF

Influence of Electrode Position on Performance of Sparkjet Actuator Using Numerical Analysis (수치해석을 이용한 전극 위치에 따른 스파크제트 액츄에이터의 성능 연구)

  • Shin, Jin Young;Kim, Hyung-Jin;Kim, Kyu Hong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.11
    • /
    • pp.753-760
    • /
    • 2019
  • Sparkjet actuator, also known as plasma synthetic jet actuator, which is a kind of active flow control actuator is considered as being high possibility for the supersonic flow control due to ejecting stronger jet compared to the other active flow control actuators. Sparkjet actuator generates high temperature and high pressure flow inside the cavity by using arc plasma and leads momentum by ejecting such flow through orifice or nozzle. In this research, numerical calculation of sparkjet actuator with respect to the location of electrodes which exists inside the cavity is conducted and the change of the performance of sparkjet actuator is suggested. As the location of electrodes goes closer to the bottom of the cavity, impulse is increased and the average pressure inside the cavity maintains higher. When the location of electrode is 25% and 75% of the entire cavity height, impulse is 2.515 μN·s and 2.057 μN·s, respectively. Each impulse is changed by about 9.92% and -10.09% compared to when the location of electrodes is 50% of the entire cavity height.

Active Control of Flow Noise Sources in Turbulent Boundary Layer on a Flat-Plate Using Piezoelectric Bimorph Film

  • Song, Woo-Seog;Lee, Seung-Bae;Shin, Dong-Shin;Na, Yang
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.11
    • /
    • pp.1993-2001
    • /
    • 2006
  • The piezoelectric bimorph film, which, as an actuator, can generate more effective displacement than the usual PVDF film, is used to control the turbulent boundary-layer flow. The change of wall pressures inside the turbulent boundary layer is observed by using the multi-channel microphone array flush-mounted on the surface when actuation at the non-dimensional frequency $f_b^+$:=0.008 and 0.028 is applied to the turbulent boundary layer. The wall pressure characteristics by the actuation to produce local displacement are more dominantly influenced by the size of the actuator module than the actuation frequency. The movement of large-scale turbulent structures to the upper layer is found to be the main mechanism of the reduction in the wall- pressure energy spectrum when the 700$700{\nu}/u_{\tau}$-long bimorph film is periodically actuated at the non- dimensional frequency $f_b^+$:=0.008 and 0.028. The biomorph actuator is triggered with the time delay for the active forcing at a single frequency when a 1/8' pressure-type, pin-holed microphone sensor detects the large-amplitude pressure event by the turbulent spot. The wall-pressure energy in the late-transitional boundary layer is partially reduced near the convection wavenumber by the open-loop control based on the large amplitude event.

Structural Vibration Control for Broadband Noise Attenuation in Enclosures

  • Krishnaswamy Kailash;Rajamani Rajesh;Woo Jong Jin;Cho Young Man
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.7
    • /
    • pp.1414-1423
    • /
    • 2005
  • This paper develops and evaluates several strategies for structural vibration control with the objective of attenuating broadband noise inside a rectangular enclosure. The strategies evaluated include model-independent collocated control, model-based feedback control and a new 'modal-estimate' feedback strategy. Collocated control requires no knowledge of model parameters and enjoys the advantage of robustness. However, effective broadband noise attenuation with colocated control requires a large number of sensor-actuator pairs. Model-based con-trollers, on the other hand, can be theoretically effective even with the use of a single actuator. However, they suffer from a lack of robustness and are unsuitable from a practical point of view for broadband structural vibration applications where the dynamic models are of large order and poorly known. A new control strategy is developed based on attenuating a few structural vibration modes that have the best coupling with the enclosure acoustics. Broadband attenuation of these important modes can be achieved using a single actuator, a limited number of accelerometers and limited knowledge of a few modal functions. Simulation results are presented to demonstrate the effectiveness of the developed strategy.

Prediction of Gear Bending Fatigue Life of Electro-mechanical Actuator for Aircraft Through Finite Element Analysis

  • Kim, Taehyung;Seok, Taehyeon;Kwon, Soon-hyeong;Lee, Byung-ho;Kwon, Byung-gi;Kwon, Jun-yong;Cheong, Seong-kyun
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.6
    • /
    • pp.58-67
    • /
    • 2020
  • In this study, finite element fatigue analysis combined with a fatigue correlation factor is proposed to predict the bending fatigue life of a gear in an electro-mechanical aircraft actuator. First, stress-life curves are obtained for the gear material via a round bar fatigue test. Subsequently, stochastic stress-life (P-S-N) curves are derived for 50% and 1% failure probabilities, separately. The curves are applied to the fatigue analysis model of a single gear tooth, and the effect of the fatigue correction factor is analyzed. The analytical P-S-N curves reflecting the fatigue correction factor matched the experimental data. This shows that the analytical fatigue life is reliable and that the analysis technique is effective.