• Title/Summary/Keyword: Mechanical accidents

Search Result 387, Processing Time 0.025 seconds

Development of Driver's Emotion and Attention Recognition System using Multi-modal Sensor Fusion Algorithm (다중 센서 융합 알고리즘을 이용한 운전자의 감정 및 주의력 인식 기술 개발)

  • Han, Cheol-Hun;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.6
    • /
    • pp.754-761
    • /
    • 2008
  • As the automobile industry and technologies are developed, driver's tend to more concern about service matters than mechanical matters. For this reason, interests about recognition of human knowledge and emotion to make safe and convenient driving environment for driver are increasing more and more. recognition of human knowledge and emotion are emotion engineering technology which has been studied since the late 1980s to provide people with human-friendly services. Emotion engineering technology analyzes people's emotion through their faces, voices and gestures, so if we use this technology for automobile, we can supply drivels with various kinds of service for each driver's situation and help them drive safely. Furthermore, we can prevent accidents which are caused by careless driving or dozing off while driving by recognizing driver's gestures. the purpose of this paper is to develop a system which can recognize states of driver's emotion and attention for safe driving. First of all, we detect a signals of driver's emotion by using bio-motion signals, sleepiness and attention, and then we build several types of databases. by analyzing this databases, we find some special features about drivers' emotion, sleepiness and attention, and fuse the results through Multi-Modal method so that it is possible to develop the system.

A Study on the Vibration Phenomenon of 6 Bundle Boltless Spacer Damper (6도체 무볼트형 Spacer Damper의 진동현상에 관한 연구)

  • 김영달
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.3
    • /
    • pp.110-118
    • /
    • 2003
  • Spacer dampers maintain the constant gaps between each conductor in a bundle conductor-transmission line, and are installed at proper intervals to keep a line from all sorts of damages derived from the vibration energy caused by mechanical or electrical external factors. It is most important to embody a technology which considers difficulties of maintenance and repair, and has optimum elements in order to prevent accidents such as destruction by fire or the snapping of a wire by the effect of vibration phenomenon coming from transmission lint In the resent thesis, therefore, the analysis of vibratory characteristics of spacer damper is set up by analytical methods such as the analysis of conductor motion's governing equation, the equation of spacer damper's motion, spacer damper-fastened wire's motion in a span and the numerical analysis of finite difference method. Furthermore, the installation distance between spacer dampers was scrutinized by simulations of various vibration phenomena which change at any time as actual conditions do, and hereafter difference method. Furthermore, the installation distance between spacer dampers was scrutinized by simulations of various vibration phenomena which change at any time as actual conditions do, and hereafter we will be able to analyze all kinds of vibration phenomena coming from a boltless spacer damper with 6 bundle conductor for 765kV transmission line based on new analytical methods.

A CFD Study of Oil Spill Velocity from Hole in the Hull of Oil Tanker (유조선 선체 파공에 따른 원유 유출 유속의 CFD 연구)

  • Choi, Dooyoung;Lee, Jungseop;Paik, Joongcheol
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.71-71
    • /
    • 2018
  • Sea pollution accidents have been occurred due to the increase of marine ship traffic. Oil spill from the hull hole induced by tanker collision results in the huge sea pollution. Proper and prompt reaction on such oil spill disaster is needed to minimize the damage. Thru-hull emergency wood plug is typically used to manually close small holes, while it is required to develop some mechanical devices for closing large holes in the hull due to huge fluid pressure. Accurate estimation of oil discharge and velocity from such holes are important to develop proper device to control hull hole damage. High resolution CFD modeling investigation on the configurations of hull hole of 7.5 m initial depth and 30 cm diameter, which was observed in the oil spill accident of the Hebei Sprit off the west coast of Korea in 2007, has been carried out to compute the oil spill velocity distribution in terms of flow depth. Friction loss due to the viscous flow and the discharge coefficient of crude oil with specific gravity SG = 0.85 and viscosity of $4-12cP(mPa{\cdot}s)$ at the temperature of $20^{\circ}C-100^{\circ}C$ are presented in terms of Reynolds number based on the results of high-resolution CFD modeling.

  • PDF

Development of an augmented reality based underground facility management system using BIM information (BIM을 활용한 증강현실 기반 지하시설물 관리 시스템 개발에 관한 연구)

  • Shin, Jaeseop;An, Songkang;Song, Jeongwoog
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.525-538
    • /
    • 2022
  • In Korea, safety accidents are continuously occurring due to the aging of underground facilities and lack of systematic management. Moreover, although the underground space is continuously being developed, the current status information is not clearly recorded and managed, so there is a limit to the systematic management of underground facilities. Therefore, this study developed an augmented reality-based system that can effectively maintain and manage underground facilities that are difficult to manage because they are located underground. In order to develop an augmented reality-based underground facility management system, three essential requirements, 'precise localization', 'use of BIM information', and 'ensure usability' were derived and reflected in the system. By utilizing Broadcast-RTK, the positional precision was secured to cm level, and the configuration and attribute information of the BIM was converted into the IFC format to construct a system that could be implemented in augmented reality. It developed an application that can optimize usability. Finally, through simulation, the configuration and attribute information of structures and mechanical systems constituting underground facilities were implemented in augmented reality. In addition, it was confirmed that the accurate and highly consistent augmented reality system works even in harsh environment (near high-rise building).

A study on the development and applicability of fire risk assessment method for small road tunnels passing only small cars (소형차 전용 도로터널의 화재 위험도 평가기법개발 및 적용성에 관한 연구)

  • Ryu, Ji-Oh;Choi, Pan-Gyu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.6
    • /
    • pp.917-930
    • /
    • 2018
  • A quantitative risk assessment method for quantitatively evaluating the fire risk in designing a road tunnel disaster prevention facilities has been introduced to evaluate the appropriateness of a disaster prevention facility in a large tunnel through which all vehicle types pass. However, since the quantitative risk assessment method of the developed can be applied only to the large sectional area tunnels (large tunnels), it is necessary to develop a quantitative risk assessment method for road tunnels passing only small cars which has recently been constructed or planned. In this study, fire accidents scenarios and quantitative risk assesment method for small road tunnels through small cars only which is based on the methods for existing road tunnels (large tunnels). And the risk according to the distance between cross passage is evaluated. As a result, in order to satisfy the societal risk assessment criteria, the distance of the appropriate distance between cross passages was estimated to be 200 m, and the effect of the ventilation system of the large port exhaust ventilation system was quantitatively analyzed by comparing the longitudinal ventilation system.

A Study on the Operation Plan of the Emergency Vehicle Preemption Based on Operation Status and Survey Data (긴급차량 운행실태와 의식도조사 분석을 통한 우선신호 운영방안 연구)

  • Eunjeong Ko;Jooyoung Lee;Junhan Cho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.1
    • /
    • pp.143-160
    • /
    • 2023
  • It is important to secure the golden time of emergency vehicles for quick responses in disaster situations, such as fire, rescue, and first aid. This study proposes plans Emergency Vehicle Preemption (EVP) based on the analysis of emergency vehicle operation to secure the golden time of emergency vehicles and increase driving safety. The emergency vehicle dispatch statistics, emergency vehicle traffic accident statistics, and survey were used for the analysis. As a result of the analysis, the frequency of dispatch of emergency vehicles and traffic accidents are increasing gradually, but the rate of securing the golden time of emergency vehicles is approximately half, indicating that improvement measures are urgent. In the questionnaire survey, most citizens consent to the necessity of introducing EVP. In addition, the criteria for the range of emergency vehicles that could provide EVP and the allowable time for waiting were derived. These results could be used to prepare EVP operation strategies, and it is expected to contribute to improving emergency vehicle operation safety and increasing the golden time securing rate through a rapid expansion of EVP.

A Study on the Application of Bushings Fire Prevent Structure to Prevent Fire Spread of Transformer (변압기의 화재확산 방지를 위한 부싱 방화구조체 적용에 관한 연구)

  • Kim, Do-Hyun;Cho, Nam-Wook;Yoon, Choung-Ho;Park, Pil-Yong;Park, Keun-Sung
    • Fire Science and Engineering
    • /
    • v.31 no.5
    • /
    • pp.53-62
    • /
    • 2017
  • Electric power which is the energy source of economy and industries requires long distance transportation due to regional difference between its production and consumption, and it is supplied through the multi-loop transmission and distribution system. Prior to its actual use, electric power flows through several transformations by voltage transformers in substations depending on the characteristics of each usage, and a transformer has the structure consisting of the main body, winding wire, insulating oil and bushings. A transformer fire that breaks out in substations entails the primary damage that interrupts the power supply to houses and commercial facilities and causes various safety accidents as well as the secondary economic losses. It is considered that causes of such fire include the leak of insulating oil resulting from the destruction of bottom part of bushings, and the chain reaction of fire due to insulating oil that reaches its ignition point within 1 second. The smoke detector and automatic fire extinguishing system are established in order to minimize fire damage, but a difficulty in securing golden time for extinguishing fire due to delay in the operation of detector and release of gas from the extinguishing system has become a problem. Accordingly, this study was carried out according to needs of active mechanism to prevent the spread of fire and block the leak of insulating oil, in accordance with the importance of securing golden time in extinguishing a fire in its early stage. A bushings fireproof structure was developed by applying the high temperature shape retention materials, which are expanded by flame, and mechanical flame cutoff devices. The bushings fireproof structure was installed on the transformer model produced by applying the actual standards of bushings and flange, and the full scale fire test was carried out. It was confirmed that the bushings fireproof structure operated at accurate position and height within 3 seconds from the flame initiation. It is considered that it could block the spread of flame effectively in the event of actual transformer fire.