• Title/Summary/Keyword: Mechanical Test

Search Result 11,524, Processing Time 0.051 seconds

A Study of Corrosion Resistance Improvement for Cr-Mo Steel in Long Term Service (장기간 사용한 Cr-Mo강의 내식성 향상 방법에 관한 연구)

  • Jin, Yeung-Jun
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.3 s.75
    • /
    • pp.8-15
    • /
    • 2006
  • It is no wonder that mechanical structures are accompanied by problems related to corrosion after being exposed to long hours of work. Corrosion of mechanical structures has been the most serious problem in the field of industry. The present study employed a laser beam irradiation test to improve the corrosion resistance of degraded Cr-Mo steel, which was used for more than 60,000 hours. To find the optimum irradiation test condition for the corrosion resistance of degraded Cr-Mo steel, hardness and residual stress measurements, micro-structural observation, and the electrochemical potentiokinetic reactivation (EPR) tests were performed with changes in laser beam test conditions including laser beam output, diameter, and velocity. Thus, the present study indicates that the optimum test condition and absorption energy for a laser beam test need to be determined to enhance corrosion resistance of degraded Cr-Mo steel.

A Study on the Compliance of a Compact Tension Test Specimen (소형인장시험편의 컴플라이언스에 관한 고찰)

  • Jeong, Gi-Hyeon;Seok, Chang-Seong;Yang, Won-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.12
    • /
    • pp.3010-3017
    • /
    • 2000
  • For integrity evaluation of cracked or damaged structures, fracture toughness test results in ASTM are widely used. The fracture toughness values of the structures are used as an effective design criterion in nuclear plants and aircraft structures. Sometimes the difference of P-$\delta$ curve trend during the unloading /reloading cycle in the fracture toughness test using partial unloading compliance was observed. The phenomenon as a possible source of error in determining fracture toughness may be caused by the residual stress during unloading work-hardening and bucking of a specimen. Therefore, we evaluate the effect of bucking and compressive residual stress during the K-R and J-R testing using a finite element method.

Computation of Unsteady Aerodynamic Forces in the Time Domain for GVT-based Ground Flutter Test (지상 플러터 실험을 위한 시간 영역에서의 비정상 공기력 계산)

  • Lee, Juyeon;Kim, Jonghwan;Bae, Jaesung
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.1
    • /
    • pp.29-34
    • /
    • 2016
  • Flutter wind-tunnel test is an expensive and complicated process. Also, the test model may has discrepancy in the structural characteristics when compared to those of the real model. "Dry Wind-Tunnel" (DWT) is an innovative testing system which consists of the ground vibration test (GVT) hardware system and software which computationally can be operated and feedback in real-time to yield rapidly the unsteady aerodynamic forces. In this paper, we study on the aerodynamic forces of DWT system to feedback in time domain. The aerodynamic forces in the reduced-frequency domain are approximated by Minimum-state approximation. And we present a state-space equation of the aerodynamic forces. With the two simulation model, we compare the results of the flutter analysis.

Study of the Functional Test and Quality Assurance Procedure of High Performance Aircraft Control Surfaces Integrate Servo Actuator (고성능 통합 비행 조정면 구동 장치의 성능 시험 및 품질보증 절차 수립에 관한 연구)

  • Jo, Jang-Hyen
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.3 no.3
    • /
    • pp.251-256
    • /
    • 2000
  • This report analyzes the Source Qualification Test which is composed of main functional and environmental tests for the localizing avionics(electronic subsystem for aircrafts and spacecraft) and high performance mechanical subsystem. Especially the detail test approaches of integrated servo actuators which is the main part to supply the power to the main and other flying control panel. Nowadays this subsystem works with mechanical and electrical engineering technique. In detail, electrical signal is used as input and transferring tool and mechanical part is the output as a power and manufacture the physical dimensions and functions. Finally in this review, the new test procedure to prove the function by the new manufacturer is established.

  • PDF

Application of Advanced Indentation System for Evaluati Tensile Property Degradation of Cr-Mo Steel (Cr-Mo 강의 열화도 평가를 위한 Advanced Indentation System의 응용)

  • Jang, Jae-Il;Choi, Yoel;Lee, Yun-Hee;Kwon, Dong-Il;Kim, Jeoung-Tae
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.231-236
    • /
    • 2001
  • A newly developed Advanced Indentation System (AIS), which is a portable and nondestructive system for evaluating tensile properties, was used to measure mechanical behavior of materials used under high temperature and pressure conditions. This test measures indentation load-depth curve during indentation and analyzes the mechanical properties related to deformation and fracture. Aging effects of Cr-Mo and Cr-Mo-V steel at high temperature were simulated. Tensile properties including yield strength and tensile strength at various temperature are obtained from the test. For all test materials and conditions, the AIS-derived results were in good agreement with those from conventional standard test method. Examples of the test results ate given and potential applications of the AIS to assess the integrity of aging structures are briefly discussed.

  • PDF

Analysis and Application of Mechanical Clinched Joint Using Cohesive Zone Model (접착영역모델을 이용한 클린칭 접합부의 해석 모델 설계 및 적용)

  • Hwang, B.N.;Lee, C.J.;Lee, S.B.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.19 no.4
    • /
    • pp.217-223
    • /
    • 2010
  • The objective of this study is to propose the FE model for mechanical clinched joint using cohesive zone model to analyze its failure behavior under impact loading. Cohesive zone model (CZM) is two-parameter failure criteria approach, which could describe the failure behavior of joint using critical stress and fracture toughness. In this study, the relationship between failure behavior of mechanical clinched joint and fracture parameters is investigated by FE analysis with CZM. Using this relationship, the critical stress and fracture toughness for tensile and shear mode are determined by H-type tensile test and lap shear test, which were made of 5052 aluminum alloy. The fracture parameters were applied to the tophat impact test to evaluate the crashworthiness. Compared penetration depth and energy absorption at the point where 50% of total displacement in result of FE analysis and experiment test for impact test, those has shown similar crashworthiness.

A Study on the Environment Test Support for Small and Medium Defense Companies to Improve Weapon System Reliability (무기체계 신뢰성 향상을 위한 중소 방산업체 환경시험 지원방안 고찰)

  • Hwang, Kyunghwan;Kim, Bohyeon;Hur, Jangwook
    • Journal of Applied Reliability
    • /
    • v.16 no.4
    • /
    • pp.287-294
    • /
    • 2016
  • Purpose: Environment test support is urgent for small and medium defense companies in order to improve the reliability of weapons systems. Also, to reduce the burden of test costs, the voucher system must be strengthened. Quality assurance support should be accompanied by budget support. Methods: First of all, it is necessary to expand infrastructure for test equipment that suffers shortages by considering environmental test frequency and waiting periods to reduce the time required for environmental tests. Results: In regard to the environmental test, expansion for test equipment infrastructure, security of budget for the test, establishment of test plan, education and consulting support are required to resolve some limits of small and medium defense companies. Conclusion: Along with the opening of environmental test courses for industry operators, the expansion for consulting support projects of the defense industry support system is needed.

A Research on Evaluation Methods of Testing Impact of the Strength of Soldering (납착강도 충격시험 평가법에 관한 연구)

  • Kim, Sa-Hak
    • Journal of Technologic Dentistry
    • /
    • v.21 no.1
    • /
    • pp.55-65
    • /
    • 1999
  • So far, I Conducted an examination with focus on the type, characteristic, and test methods of impact test. which is a type of mechanical that evaluate materials. As mentioned previously, in testing soldering strength of soldering is the load when the object under experiment is broken down with the result of flexibility test or peel test. In this method, a hevay load is necessary until alloy of parent metal is bended, if the alloy of the parent metal has a large mechanical quality(peel strength or resisting power). Once the alloy of the parent metal is bended, however, it tends to come into pieces abruply form the part where soldered. Therefore, a metal has a high breakdown value if the degree of strength of its parent metal is high even if the result of measurement indicates otherwise. Thus, the result of the test did not correspond to the clinical result. Therefore, this study concludes as the following from a test of strength of soldering by mean of conducting an impact test, which is a type of mechanical evaluation methods : 1. Among various impact tests, a charpy thpe is more appropriate than the izod type in testing strength of soldering. 2. As far as test piece is concerned, to use subsized impact test piece is appropriate in the impact test in that it does not have notch. 3. In the matter of analysis, it is appropriate to measure absorbing energy which results from rupture of test piece.

  • PDF

A Study on High Temperature Fracture Behavior of Plasma Sprayed Zirconia/ NiCrAlY Coating System (지르코니아 /NiCrAlY 계 플라즈마 용사피막의 고온 파괴거동에 관한 연구)

  • Kim, Yeon-Jik;Im, Jae-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.10
    • /
    • pp.3234-3242
    • /
    • 1996
  • This paper describes experimental results of modified small punch( MSP) test conducted to evaluate the fracure characteristics and mechanical properties of plasma sparayed zirconia ($ZrO_2$ stabilized with 8wt. % $Y_20_3$ : YSZ) NiCrAlY composite. The mixing ratios of YSZ/NiCrAlY were 0/100, 25/75, 50/50, 100/0 v.%. Test temperatures ranged from 293K to 1473K. This study is directed at development of thermal barrrier coating(TBC) system with superior heat resistance and mechanical properties. The microstructure and fracture process of the composite were examined by SEM and AE method. The mechanical properties of 100% YSZ were nearly independent of the temperatures tested in this study. In contrast, the NiCrAlY-containing composites showed a significant decrease of the mechanical properties above 1273K, showing a ductile- brittle transition behavior up to the temperature. Furthermore, it can seen that 25% YSZ/75% NiCrAlY composite gave the highest fracure strength and fracture energy among the mixing ratio tested over the temperature range.