• Title/Summary/Keyword: Mechanical Shearing

Search Result 227, Processing Time 0.027 seconds

Microstructural Modification of High-Fe Containing A356 Alloy by Liquid Metal Shearing Process (용융금속 교반공정을 통한 고Fe 함유 A356 합금의 미세조직 개질)

  • Kim, Bong-Hwan;Lee, Sang-Mok
    • Journal of Korea Foundry Society
    • /
    • v.31 no.6
    • /
    • pp.354-361
    • /
    • 2011
  • The liquid metal shearing device was constructed and assembled with a commercial high-pressure die-caster in order to induce intensive turbulent shearing force on molten aluminum alloys. The effect of the liquid metal shearing on the microstructure and tensile properties of A356 alloys was investigated with the variation of iron content. The experimental results show that dendritic primary ${\alpha}$-Al phase was effectively modified into a equiaxed form by the liquid metal shearing. It was also found that the needle-like ${\beta}$-AlFeSi phase in a Fe containing A356 alloy was changed into a blocky shape resulting in the improved mechanical properties. Based on the mechanical properties, it was suggested that the iron content in A356 alloy could be more widely tolerated by utilizing the liquid metal shearing HPDC process.

Mechanical and Rheological Properties of Rice Plant (수도(水稻)의 역학적(力學的) 및 리올러지 특성(特性)에 관(關)한 연구(硏究))

  • Huh, Yun Kun;Cha, Gyun Do
    • Korean Journal of Agricultural Science
    • /
    • v.14 no.1
    • /
    • pp.98-133
    • /
    • 1987
  • The mechanical and rheological properties of agricultural materials are important for engineering design and analysis of their mechanical harvesting, handling, transporting and processing systems. Agricultural materials, which composed of structural members and fluids do not react in a purely elastic manner, and their response when subjected to stress and strain is a combination of elastic and viscous behavior so called viscoelastic behavior. Many researchers have conducted studies on the mechanical and rheological properties of the various agricultural products, but a few researcher has studied those properties of rice plant, and also those data are available only for foreign varieties of rice plant. This study are conducted to experimentally determine the mechanical and the rheological properties such as axial compressive strength, tensile strength, bending and shear strength, stress relaxation and creep behavior of rice stems, and grain detachment strength. The rheological models for the rice stem were developed from the test data. The shearing characteristics were examined at some different levels of portion, cross-sectional area, moisture content of rice stem and shearing angle. The results obtained from this study were summarized as follows 1. The mechanical properties of the stems of the J aponica types were greater than those of the Indica ${\times}$ Japonica hybrid in compression, tension, bendingand shearing. 2. The mean value of the compressive force was 80.5 N in the Japonica types and 55.5 N in the Indica ${\times}$ Japonica hybrid which was about 70 percent to that of the Japonica types, and then the value increased progressively at the lower portion of the stems generally. 3. The average tensile force was about 226.6 N in the Japonica types and 123.6 N in the Indica ${\times}$ Japonica hybrid which was about 55 percent to that of the Japonica types. 4. The bending moment was $0.19N{\cdot}m$ in the Japonica types and $0.13N{\cdot}m$ in the Indica ${\times}$ Japonica hybrid which was 68 percent to that of the Japonica types and the bending strength was 7.7 MPa in the Japonica types and 6.5 MPa in the Indica ${\times}$ Japonica hybrid respectively. 5. The shearing force was 141.1 N in Jinju, the Japonica type and 101.4 N in Taebaeg, the Indica ${\times}$ Japonica hybrid which was 72 percent to that of Jinju, and the shearing strength of Taebaeg was 63 percent to that of Jinju. 6. The shearing force and the shearing energy along the stem portion in Jinju increased progressively together at the lower portions, meanwhile in Taebaeg the shearing force showed the maximum value at the intermediate portion and the shearing energy was the greatest at the portion of 21 cm from the ground level, and also the shearing strength and the shearing energy per unit cross-sectional area of the stem were the greater values at the intermediate portion than at any other portions. 7. The shearing force and the shearing energy increased with increase of the cross-sectional area of the rice stem and with decrease of the shearing angie from $90^{\circ}$ to $50^{\circ}$. 8. The shearing forces showed the minimum values of 110 N at Jinju and of 60 N at Taebaeg, the shearing energy at the moisture content decreased about 15 percent point from initial moisture content showed value of 50 mJ in Jinju and of 30 mJ in Taebaeg, respectively. 9. The stress relaxation behavior could be described by the generalized Maxwell model and also the compression creep behavior by Burger's model, respectively in the rice stem. 10. With increase of loading rate, the stress relaxation intensity increased, meanwhile the relaxation time and residual stress decreased. 11. In the compression creep test, the logarithmic creep occured at the stress less than 2.0 MPa and the steady-state creep at the stress larger than 2.0 MPa. 12. The stress level had not a significant effect on the relaxation time, while the relaxation intensity and residual stress increased with increase of the stress level. 13. In the compression creep test of the rice stem, the instantaneous elastic modulus of Burger's model showed the range of 60 to 80 MPa and the viscosities of the free dashpot were very large numerical value which was well explained that the rice stem was viscoelastic material. 14. The tensile detachment forces were about 1.7 to 2.3 N in the Japonica types while about 1.0 to 1.3 N in Indica ${\times}$ Japonica hybrid corresponding to 58 percent of Japonica types, and the bending detachment forces were about 0.6 to 1.1 N corresponding to 30 to 50 percent of the tensile detachment forces, and the bending detachment of the Indica ${\times}$ Japonica hybrid was 0.1 to 0.3 N which was 7 to 21 percent of Japonica types. 15. The detachment force of the lower portion was little bigger than that of the upper portion in a penicle and was not significantly affected by the harvesting period from September 28 to October 20. 16. The tensile and bending detachment forces decreased with decrease of the moisture content from 23 to 13 percent (w.b.) by the natural drying, and the decreasing rate of detachment forces along the moisture content was the greater in the bending detachment force than the tensile detachment force.

  • PDF

Shearing and Electro-optical Properties of Stressed Cholesteric Liquid Crystal Cells

  • Lee, Jung-Min;Kang, Dae-Seung
    • Journal of Information Display
    • /
    • v.11 no.2
    • /
    • pp.91-93
    • /
    • 2010
  • The shearing effects on the electro-optical properties of a stressed cholesteric liquid crystal were investigated. A photopolymer was dispersed in the cholesteric liquid crystal cell. By carefully choosing the mixing ratio between the liquid crystal and the photoreactive monomer, and by applying suitable mechanical shearing on the substrates, a cholesteric liquid crystal display with a low threshold voltage and no alignment layer was demonstrated.

A Study on The Burr Formation in Sheet Metal Shearing (박판 전단시의 버 형성에 관한 연구)

  • Shin, Yong-Seung;Kim, Byeong-Hee;Kim, Heon-Young;Oh, Soo-Ik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.9
    • /
    • pp.166-171
    • /
    • 2002
  • The objective of this paper is to investigate the effect of clearance and the configuration of die system on burr formation by FEM analysis and experimental tests. Compared with casting, forging and machining, shearing has been known, especially in heavy or mass-production industries, as a very economical and fast way to obtain the desired shape Recently, the shearing process becomes widely used in the small and light electronic component manufacturing industries. When shearing a part of sheet metal, the burr formed on the cutting edge is usually unavoidable. The burr would not only degrade the precision of products but also causes additional cost for the deburring process. In this paper, the influence of shearing parameters such as clearance and configurations of the lower pad (ejector) on burr formation is investigated by using the experimental and numerical approach. From the experimental results, it has been shown that the more narrow clearance gives the smaller burr height and the higher shearing forces. The removal of lower holder also makes the sheared surface integrity and the dimensional accuracy become worse. The FEM results (using DEFORM-2D) show good agreement with the experimental results.

Development of Precise Shearing Mechanism on Thin Sheet for Laser Welding (Analysis of Precise Shearing Process using FEM (레이저 용접을 위한 박판재의 정밀 전단 메카니즘 개발 (유한요소법을 이용한 정밀 전단 공정해석))

  • 표창률;전병희;조명래
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.4
    • /
    • pp.53-59
    • /
    • 1999
  • Recently, Tailor Welded Blank (TWB) is widely used in automotive industry since the transformation characteristic of its material can be changed. However, clearance between welding surfaces becomes the important factor which affect the quality of the laser weld, causing difficulties in preparing the sheet. The objective of this paper is to systematically evaluate the effects of previously presented fracture criterion and shearing condition on precise mechanical shearing simulation result. For this purpose, a parametric study was peformed to investigate the effect of finite element size and fracture criterion on simulation result. Also, in order to predict the optimum shearing condition, effect of shearing conditions such as clearance and punch radius on the shear plane shape was evaluated.

  • PDF

Finite Element Analysis for Fracture Criterion of PolyJet Materials (PolyJet 적층재료의 파괴기준 설정을 위한 유한요소해석)

  • Kim, Dong Bum;Lee, Geun Tae;Lee, In Hwan;Cho, Hae Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.4
    • /
    • pp.134-139
    • /
    • 2015
  • PolyJet technology is an additive manufacturing (AM) technology commonly used for modeling, prototyping, and production applications. It is one of the techniques used for 3D printing. The PolyJet technique is a process that joins materials to fabricate a product from 3D CAD data in a layer-by-layer manner. The orientation of a layer can affect the mechanical properties of the product manufactured by the PolyJet technique because of its anisotropy. In this paper, tensile and shearing tests of specimens were developed with the PolyJet technique in order to study the mechanical properties according to the orientation of a layer. The mechanical properties of the specimens were determined on the basis of true stress-strain curves from tensile and shearing tests. In addition, the tensile and shearing tests were simulated under the same conditions as those of experiment, and the experiment and simulated results were compared. Through this study, the fracture criteria could be established.

A Study on the Fatigue Phenomena of Woven Fabrics -On the Changes of Mechanical Properties and Handle of Woven Fabrics Caused by the Wearing- (직물의 피노에 관한 연구 -착용에 의한 역학적 성질과 태의 변화-)

  • Suh Young Sook
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.10 no.1
    • /
    • pp.47-57
    • /
    • 1986
  • The purpose of this study is to investigate fatigue phenomema of woven fabric. In order to obtain the basic data which is available for predicting the fabric fatigue phenomena, the change of mechanical properties of woven fabrics caused by the wearing and the changes of mechanical properties of woven fabrics which were subjected to repeated tensile-shearing deformation using fabric testing machine has been investigated and compared. The fatigue of woven fabrics was examined with the value of basic mechanical properties of specimens measured by the KES-F fabric testing system and their hand value and wearing ability. The results were as follows. 1) The fatigue phenomena of woven fabrics by the wearing for 800 hours are different on the position of the body: On the portion of hip, the change of surface property was the greatest, bending hysterisis was greatly increased, thickness weight, stiffness, fullness shearing hysterisis were more increased than original fabric and T.H.V. was decreased. On the portion of knee, decreasing of tensile resilience and increasing of bending, shearing hysterisis were observed greater than any other part, and increasing of stiffness, crispness was more than original fabric. On the bottom area, the changes of mechanical property was comparatively small, H.V. and T.H.V. showed near the value of the original fabric. 2) By drycleaning most of mechanical properties showed the tendency to recover the value of the original fabric, but bending hysterisis and thickess were increased, tensile and com-pression resilience were decreased more than original fabric in all parts. 3) The fatigue phenomena caused by fabric fatigue testing machine were as follows. The decreasing of hystersis in the repeated deformation such as bending, shearing was appeared at the $10^2$ deformation, but with the increasing cycle, the tendency was slightly regained. Handle value was also appeared the lowest value at the $10^2$ deformation.

  • PDF

A Study on the shearing properties of Fabrics for Korean Women's Clothes (부인용 한복지의 전단특성에 관한 연구)

  • 성수광
    • Journal of the Korean Home Economics Association
    • /
    • v.26 no.2
    • /
    • pp.29-38
    • /
    • 1988
  • The shearing properties, which belong to the mechanical properties of fabrics, are most closely related to the appearnace of weared clothes, formation and feeling of wearing. And they are the elements which show the sense of touch, the properties of drape, folds and recoveryk curve foring, and keeping up formation. Sorts of 156 commercial skil fabrics and polyester fabrics of Korean make for women's cloth were tested for shearing propreties. All samples were classified into for summer and for fall and winter wear. Then shearing properties were measured by kawabata's evluation method. In this study shear stiffness(G) and shear hysteresis (2HG, 2HG5) of shearing prperties were measurd, then G/W and 2HG/G which are concerning to formation of weared clothes and trnsformatio behavior wre properties. The results obtained are as follows: 1. Silk fabrics were higher than polyester fabrics in G and 2HG. Thickness and weight of the fabrics for summer were a third to a half of those of the fabrics for fall and winter, but shearing properties were almost the same in the two types of the fabrics. 2. Fabrics for fall and winter were lower than fabrics for summer in G/W and fabrics for summer were lower than fabrics for fall and winter in 2HG/G. 3. korean women's silk cloth was much lighter than Japanese kimono cloth in weight but thickness and shearing properties were almost the same in the two types of the clothes.

  • PDF

WAVEFRONT SENSING TECHNOLOGY FOR ADAPTIVE OPTICAL SYSTEMS

  • Uhma Tae-Kyoung;Rohb Kyung-Wan;Kimb Ji-Yeon;Park Kang-Soo;Lee Jun-Ho;Youn Sung-Kie
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.628-632
    • /
    • 2005
  • Remote sensing through atmospheric turbulence had been hard works for a long time, because wavefront distortion due to the Earth's atmospheric turbulence deteriorates image quality. But due to the appearance of adaptive optics, it is no longer difficult things. Adaptive optics is the technology to correct random optical wavefront distortions in real time. For past three decades, research on adaptive optics has been performed actively. Currently, most of newly built telescopes have adaptive optical systems. Adaptive optical system is typically composed of three parts, wavefront sensing, wavefront correction and control. In this work, the wavefront sensing technology for adaptive optical system is treated. More specifically, shearing interferometers and Shack-Hartmann wavefront sensors are considered. Both of them are zonal wavefront sensors and measure the slope of a wavefront. . In this study, the shearing interferometer is made up of four right-angle prisms, whose relative sliding motions provide the lateral shearing and phase shifts necessary for wavefront measurement. Further, a special phase-measuring least-squares algorithm is adopted to compensate for the phase-shifting error caused by the variation in the thickness of the index-matching oil between the prisms. Shack-Hartmann wavefront sensors are widely used in adaptive optics for wavefront sensing. It uses an array of identical positive lenslets. And each lenslet acts as a subaperture and produces spot image. Distortion of an input wavefront changes the location of spot image. And the slope of a wavefront is obtained by measuring this relative deviation of spot image. Structures and measuring algorithms of each sensor will be presented. Also, the results of wavefront measurement will be given. Using these wavefront sensing technology, an adaptive optical system will be built in the future.

  • PDF

Shearing Conditions on the Interface of a Spherical Water Drop Sinking in Silicone Oil

  • Uemura, Tomomasa;Yamauchi, Makoto
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.12
    • /
    • pp.1845-1852
    • /
    • 2001
  • This paper deals with the experiment to obtain quantitative information about conditions of the interface between a water drop and surrounding oil. Velocity distributions in very close region of the interface are measured by introducing a new illumination technique and a telecentric lens. It enables precise measurements of velocity distributions in the close region to the interface. Although the measured velocity distributions exhibit strong influence from the solid wall of an experimental tube, the coincidence of inner and outside velocities on the interface is clearly confirmed for the clean interface. The shearing stresses on the interface, which are proportional to the velocity gradient normal to the interface, clearly show conditions of contaminated interface, which can be divided into two parts. From front stagnation point to somewhere near a separation point, the distribution of shearing stresses is well coincide with that of the Hadamard's analytical solution, while the distribution on the latter part of the interface sows quite different feature, which is supposed to be strongly influenced by contamination of the surface.

  • PDF