• Title/Summary/Keyword: Mechanical Press

Search Result 4,844, Processing Time 0.027 seconds

Mechanical Properties of Hot-forged Al 6061-T6 (Al 6061-T6 단조 성형품의 기계적 특성)

  • Park, C.;Kim, S.S.;Kwon, Y.N.;Lee, Y.S.;Lee, J.H.
    • Korean Journal of Materials Research
    • /
    • v.13 no.6
    • /
    • pp.374-380
    • /
    • 2003
  • The effect of forging parameters, including different forging stock, strain rate and strain, on the mechanical properties of hot-forged Al 6061-T6 was investigated. The forging was conducted using either hydraulic press, crank press or hammer press, respectively, at a forging temperature of $400^{\circ}C$. When using an extruded bar as a forging stock, the tensile strength was lower for the specimens prepared by hammer forging than those by crank press forging. It was found that the coarsening of recrystallized grain was responsible for the decrease in tensile strength with hammer forging. Systematic studies on the effects of strain and strain rate on the tensile properties of hot-forged Al 6061-T6 products using extruded bar as a forging stock further suggested that the coarsening of recrystallized grains and$ Mg_2$Si precipitates complexed the observed trends in the tensile behavior. In case of hot forging with continuous cast bar as a forging stock, on the other hand, the mechanical properties of the specimen were largely improved with hammer press compared to those with crank press, which appeared to be due to the homogenization of microstructure.

Fabrication and AE Characteristics of TiNi/ A16061 Shape Memory Alloy Composite

  • Park, Young-Chul;Lee, Jin-Kyung
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.453-459
    • /
    • 2004
  • TiNi/ Al6061 shape memory alloy (SMA) composite was fabricated by hot press method to investigate the microstructure and mechanical properties. Interface bonding between TiNi reinforcement and A1 matrix was observed by using SEM and EDS. Pre-strain was imposed to generate compressive residual stress inside composite. A tensile test for specimen, which under-went pre-strain, was performed at high temperature to evaluate the variation of strength and the effect of pre-strain. It was shown that interfacial reactions occurred at the bonding between matrix and fiber, creating two inter-metallic layers. And yield stress increased with the amount of pre-strain. Acoustic Emission technique was also used to nondestructively clarify the microscopic damage behavior at high temperature and the effect of pre-strain of TiNi/ Al6061 SMA composite.

Microstructure, Mechanical and Wear Properties of Hot-pressed $Si_3N_4-TiC$ Composites

  • Hyun Jin Kim;Soo Whon Lee;Tadachika Nakayama;Koichi Niihara
    • The Korean Journal of Ceramics
    • /
    • v.5 no.4
    • /
    • pp.317-323
    • /
    • 1999
  • Si3N4-TiC composites have been known as electrically conductive ceramics. $Si_3N_4-TiC$ composites with 2 wt% $Al_2O_3$ and 4 wt% $Y_2O_3$ were hot pressed in $N_2$ environment. The mechanical properties including hardness, fracture toughness, and flexural strength and tribological properties were investigated as a function of TiC content. $Si_3N_4-40$ vol% TiC composite was hot pressed at $1,750^{\circ}C$, $1,800^{\circ}C$, and $1,850^{\circ}C$ for 1, 3 and 5 hours in $N_2$ gas. Mechanical and tribolgical properties depended on microstructures, which were controlled by hte TiC content, hot press temperature, and hot press holding time. However, mechanical properties and tribological behaviors were degraded by the chemical reaction between TiC and N. The chemically reacted products such as TiCN, SiC, and $SiO_2$ were detered by the X-ray diffraction analysis.

  • PDF

Improvement in Mechanical and Wear Properties of WC-Co by Ultrasonic Nanocrystal Surface Modification Technique (초음파나노표면개질 기술을 적용한 초경의 기계적특성 및 마모 연구)

  • Lee, Seung-Chul;Kim, Jun-Hyong;Choi, Gab-Su;Jang, Young-Do;Amanov, Auezhan;Pyun, Young-Sik
    • Tribology and Lubricants
    • /
    • v.31 no.2
    • /
    • pp.56-61
    • /
    • 2015
  • In this study, we investigated the effectiveness of an ultrasonic nanocrystal surface modification (UNSM) technique on the mechanical and wear properties of tungsten carbide (WC). The UNSM technique is a newly developed surface modification technique that increases the mechanical properties of materials by severe plastic deformation. The objective of this study was to improve the wear resistance of press die made of WC by applying the UNSM technique. We observed the microstructures of the untreated and UNSM-treated specimens using a scanning electron microscope (SEM), and energy-dispersive X-ray spectroscopy (EDX) was used to investigate the chemical composition. The SEM observations showed the pore size and the number of pores decreased after the UNSM treatment. We assessed the wear behavior of both the untreated and UNSM-treated specimens using a scratch test. The test results showed that the wear resistance of the UNSM-treated specimens increased by about 46% compared with the untreated specimens. This may be attributed to increased hardness, reduced surface roughness, induced compressive residual stress, and refined grain size following the application of the UNSM technique. In addition, we found that the UNSM treatment increased the carbon concentration to 63% from 33%. We expect that implementing the findings of this study will lead to an increase in the life of press dies.

Optimization of Conditions of Forming Quality for Hot-press-formed Lower Control Arm Using Finite Element Analysis (유한요소해석을 이용한 열간프레스성형 적용 로어 컨트롤 암의 성형품질 조건 최적화)

  • Son, Hyun-Sung;Choi, Byung-Keun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.1
    • /
    • pp.45-50
    • /
    • 2011
  • Hot-Press-Forming (HPF), an advanced sheet metal forming method using stamping at a high temperature of about $900^{\circ}C$ and quenching in an internally cooled die set, is one of the most successful forming process in producing crash-resistant parts such as pillars and bumpers with complex shape, ultrahigh strength, and minimum springback. To optimize conditions of a forming quality in HPF process and secure a safe product without any failures, such as fractures and wrinkling, the simulations based on the coupled thermo-mechanical analysis for a hot-press-formed lower control arm are applied with Taguchi's orthogonal array experiment. Three factor variables - the friction coefficient, blank shape, and hole location for burring - are selected to be optimized. The most effective condition of a forming quality for a hot-press-formed lower control arm is suggested. The simulation results are confirmed with experimental ones.

Evaluation of Fatigue Crack Initiation Life in a Press-Fitted Shaft Considering the Fretting Wear (프레팅 마모를 고려한 압입축의 피로균열 발생수명 예측)

  • Lee, Dong-Hyong;Kwon, Seok-Jin;You, Won-Hee;Choi, Jae-Boong;Kim, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.10
    • /
    • pp.1091-1098
    • /
    • 2009
  • In this paper, the procedure to estimate fatigue crack initiation life has been established by considering fretting wear and multiaxial stress states on the contact surface of press-fitted shafts. And a method to calculate the local friction coefficient during the running-in period of fretting wear process has been proposed. The predicted result of worn surface profile in the press-fitted shaft with non-linear local friction coefficient can avoid excessive wear depth estimation compared with that for the case of constant local friction coefficient. Furthermore, the predicted fatigue crack initiation lives based on Smith-Watson-Topper model considering the fretting wear are in good agreement with the experimental data. Consequently, the present method is valid not only for predicting worn surface profile, but also for assessing fatigue crack initiation lives considering the fretting wear during the running-in period in press fits.

A Study on the Estimating the Mechanical Properties of Three-Layer Particleboard (3층(層) 파티클보드의 기계적(機械的) 성질(性質) 예측(豫測)에 관(關)한 연구(硏究))

  • Park, Hee-Jun;Lee, Phil-Woo;Chung, Ju-Sang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.64-72
    • /
    • 1993
  • Mechanical properties of 15 mm thick, three-layer particleboard were studied by varying resin content, specific gravity, mat moisture content, pressing time and pressing temperature. Based on the results of the study, Multiple regression models were developed to estimate the mechanical properties of three-layer particleboard. The results of this study showed the mechanical properties of particleboard were highly related with resin content. specific gravity and mat moisture content in decending order. The mechanical properties were able to estimated as the linear function of resin content and specific gravity. However, the effects of change in mat moisture content on the mechanical properties showed a non-linear pattern. The mechanical properties curves over mat moisture content reached peaks at 15 %, and then decreased at 18 % and 21 % of mat moisture contents. On the other hand, the effects of pressing time and pressing temperature on the mechanical properties of particleboard were not significant.

  • PDF