• Title/Summary/Keyword: Mechanical Modeling

Search Result 3,125, Processing Time 0.029 seconds

Fracture-mechanical Modeling of Tool Wear by Finite Element Analysis (유한요소해석에 의한 공구마모의 파괴역학적 모델링 연구)

  • Sur, Uk-Hwan;Lee, Yeong-Seop
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.4 s.68
    • /
    • pp.135-140
    • /
    • 2004
  • Wear mechanisms may be briefly classified by mechanical, chemical and thermal wear. A plane strain finite element method is used with a new material stress and temperature fields to simulate orthogonal machining with continuous chip formation. Deformation of the workpiece material is healed as elastic-viscoplastic with isotropic strain hardening and the numerical solution accounts for coupling between plastic deformation and the temperature field, including treatment of temperature-dependent material properties. Effect of the uncertainty in the constitutive model on the distributions of strait stress and temperature around the shear zone are presented, and the model is validated by comparing average values of the predicted stress, strain, and temperature at the shear zone with experimental results.

Hydropneumatic Modeling and Analysis of a Heavy Truck Cabin Air Suspension System (대형 트럭 캐빈 공기 현가장치의 유공압 모델링 및 해석)

  • Shin, Hang-Woo;Choi, Gyoo-Jae;Lee, Kwang-Heon;Ko, Han-Young;Cho, Gil-Joon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.4
    • /
    • pp.128-134
    • /
    • 2008
  • In this paper, a hydropneumatic modeling and analysis of a heavy truck cabin air suspension system is presented. Cabin air suspension system is a system which improves ride comfort of a heavy truck and it can reduce vibration between truck frame and cabin. The components of the system, air spring, shock absorber, leveling valve and full cabin system are mathematically modelled using AMESim software. Simulation results of components and full cabin system are compared with experimental data of components and test results of a cabin using 6 axis simulation table. It is found that the simulation results are in good agreements with test results, and the hydropneumatic model can be used well to predict dynamic characteric of heavy truck cabin air suspension system.

Design and Performance Evaluation of a 3-DOF Mobile Microrobot for Micromanipulation

  • Park, Jungyul;Kim, Deok-Ho;Kim, Byungkyu;Kim, Taesung;Lee, Kyo-Il
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.9
    • /
    • pp.1268-1275
    • /
    • 2003
  • In this paper, a compact 3-DOF mobile microrobot with sub-micron resolution is presented. It has many outstanding features : it is as small as a coin ; its precision is of sub-micrometer resolution on the plane ; it has an unlimited travel range ; and it has simple and compact mechanisms and structures which can be realized at low cost. With the impact actuating mechanism, this system enable both fast coarse motion and highly precise fine motion with a pulse wave input voltage controlled. The 1 -DOF impact actuating mechanism is modeled by taking into consideration the friction between the piezoelectric actuator and base. This modeling technique is extended to simulate the motion of the 3-DOF mobile robot. In addition, experiments are conducted to verify that the simulations accurately represent the real system. The modeling and simulation results will be used to design the model-based controller for the target system. The developed system can be used as a robotic positioning device in the micromanipulation system that determines the position of micro-sized components or particles in a small space, or assemble them in the meso-scale structure.

A New Wheel Arrangement by Dynamic Modeling and Driving Performance Analysis of Omni-directional Robot (다중이동로봇의 동적 모델링 및 구동성능 분석을 통한 새로운 바퀴 배치 제안)

  • Shin, Sang Jae;Kim, Haan;Kim, Seong Han;Chu, Chong Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.1
    • /
    • pp.18-23
    • /
    • 2013
  • Omni-directional robot is a typical holonomic constraint robot that has three degrees of freedom movement in 2D plane. In this study, a new omni-directional robot whose wheels are arranged in radial directions was proposed to improve driving performance of the robot. Unlike a general omni-directional robot whose wheels were arranged in a circumferential direction, moments do not arises in the proposed robot when the robot travels in a straight line. To analyze driving performance, dynamic modeling of the omni-directional robot, which considers friction and slip, was carried out. By friction measurement experiments, the relationship between dynamic friction coefficient and relative velocity was derived. Dynamic friction coefficient according to the angle difference between robot travel direction and wheel rotation direction was also obtained. By applying these results to the dynamic model, driving performance of the robot was calculated. As a result, the proposed robot was 1.5 times faster than the general robot.

Finite Element Modeling for Static and Dynamic Analysis of Structures with Bolted Joints (볼트결합부를 포함한 구조물의 정적 및 동적 해석을 위한 유한요소 모델링)

  • Gwon, Yeong-Du;Gu, Nam-Seo;Kim, Seong-Yun;Jo, Min-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.4
    • /
    • pp.667-676
    • /
    • 2002
  • Many studies on the finite element modeling for bolted joints have proceeded, but the structures with bolted joints are complicated in shape and it is difficult to find out the characteristics according to joint condition. Usually, experimental methods have been used for bolted joint analysis. A reliable and practical finite element modeling technique for structure with bolted joints is very important for engineers in industry. In this study, three kinds of model are presented; a detailed model, a practical model and a simple model. The detailed model is modeled by using 3-D solid element and gap element, and the practical model is modeled by using shell element (a portion of bolt head) and beam element (a portion of bolt body), the simple model is modeled by simplifying practical model without using gap elements. Among these models, the simple model has the least degree of freedom and show the effect of memory reduction of 59%, when compared with the detailed model.

Prediction of ballooning and burst for nuclear fuel cladding with anisotropic creep modeling during Loss of Coolant Accident (LOCA)

  • Kim, Jinsu;Yoon, Jeong Whan;Kim, Hyochan;Lee, Sung-Uk
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3379-3397
    • /
    • 2021
  • In this study, a multi-physics modeling method was developed to analyze a nuclear fuel rod's thermo-mechanical behavior especially for high temperature anisotropic creep deformation during ballooning and burst occurring in Loss of Coolant Accident (LOCA). Based on transient heat transfer and nonlinear mechanical analysis, the present work newly incorporated the nuclear fuel rod's special characteristics which include gap heat transfer, temperature and burnup dependent material properties, and especially for high temperature creep with material anisotropy. The proposed method was tested through various benchmark analyses and showed good agreements with analytical solutions. From the validation study with a cladding burst experiment which postulates the LOCA scenario, it was shown that the present development could predict the ballooning and burst behaviors accurately and showed the capability to predict anisotropic creep behavior during the LOCA. Moreover, in order to verify the anisotropic creep methodology proposed in this study, the comparison between modeling and experiment was made with isotropic material assumption. It was found that the present methodology with anisotropic creep could predict ballooning and burst more accurately and showed more realistic behavior of the cladding.

Development of an Entity-Relationship Modeling System for Designing Relational Database (관계형 데이터베이스 설계를 위한 개체 - 관계 모델링 시스템 개발)

  • Yoo, Jae-Gun
    • IE interfaces
    • /
    • v.16 no.spc
    • /
    • pp.45-48
    • /
    • 2003
  • Entity-relationship modeling for designing relational database is a very complicated thinking process that requires extensive knowledge and experiences. It is very likely that designers make mistakes in this process. In order to minimize the mistakes, a systematic method to guide the thinking process is needed. In this research, an entity-relationship modeling system is developed, which resolves the whole process of information modeling, data modeling, and functional dependency relationship analysis into small and simple decision-making steps. Therefore, it can reduce the possibility of making decision errors and improve the efficiency of the modeling process. It's functionality and efficiency is verified through some modeling examples. It is expected that the modeling system can be commercialized, if some functions are added, such as detection, warning, and correction of decision errors, and educational help.

Development of Pyrolysis Equipment to Depolymerize the Waste Tire (폐타이어의 열분해장치 개발)

  • Kim, Tae-Kyu;Yang, Sang-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.12
    • /
    • pp.1208-1213
    • /
    • 2007
  • Some structural problems and temperature difference of the pyrolysis equipment were improved by using the structure analysis and the optimal design of torch. The pyrolysis equipment developed in this study is expected to the excellent pyrolysis effect. To modify user-friendly the dimension of a part, we developed the feature modeling system that all of the related parts automatically change applying to the three-dimensional modeling method.

Modeling and Analysis of a Hydraulic Breaker Considering Elastic Impact between the Piston and the Chisel (유압브레커의 모델링 및 피스톤과 치즐간의 탄성충돌을 고려한 해석)

  • 고승환;임종혁
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.2
    • /
    • pp.338-347
    • /
    • 1995
  • Equations of motion and continuity equations of a hydraulic breaker are derived. Hydraulic pressures are defined with 6 state variables corresponding to 6 control volumes. Impact analysis procedure of the piston and chisel is developed based on the finite element nodal displacement description. Computer simulation is performed with given design parameters and the results are compared with experimental results.

Modeling of the Sampling Effect in the P-Type Average Current Mode Control

  • Jung, Young-Seok;Kim, Marn-Go
    • Journal of Power Electronics
    • /
    • v.11 no.1
    • /
    • pp.59-63
    • /
    • 2011
  • This paper presents the modeling of the sampling effect in the p-type average current mode control. The prediction of the high frequency components near half of the switching frequency in the current loop gain is given for the p-type average current mode control. By the proposed model, the prediction accuracy is improved when compared to that of conventional models. The proposed method is applied to a buck converter, and then the measurement results are analyzed.